Определение скоростей точек плоской фигуры. Определение скоростей точек тела плоской фигуры Определение скоростей точек плоской фигуры

08.09.2023 Мода и стильные тенденции

Напомним, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения вместе с полюсом и вращательного движения вокруг полюса.

В соответствии с этим скорость произвольной точки М плоской фигуры геометрически складывается из скорости какой-нибудь точки А, принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса, т. е.

При этом скорость V MA определяется как скорость точки М при вращении тела вокруг неподвижной оси, проходящей через точку А перпендикулярно плоскости движения (см. § 7.2), т. е.

Таким образом, если известны скорость полюса V А и угловая скорость тела со, то

скорость любой точки М тела определяется в соответствии с равенством (8.2), диагональю параллелсгграмма, построенного на векторах V A и V MA , как на сторонах (рис. 8.3), а модуль скорости V M вычисляется по формуле

где у - угол между векторами V A и V MA

Задача 8.1. Колесо катится по неподвижной поверхности без скольжения (рис. 8.4, а). Найти скорость точек К и D колеса, если известны скорость V c центра С колеса, радиус R колеса, расстояние КС = b и угол а.

Решение. 1. Рассматриваемое движение колеса является плоскопараллельным. Приняв точку С за полюс (так как ее скорость известна), в соответствии с общим равенством (8.2), для точки К можем записать

Однако нет возможности определить значение V KC , так как неизвестна угловая скорость со.

Для определения со рассмотрим скорость другой точки, а именно точки Р касания колеса о неподвижную поверхность (рис. 8.4, б). Для этой точки можно написать равенство

Особенностью точки Р является то обстоятельство, что в данный момент времени V p - 0, так как колесо катится без скольжения. Тогда равенство (б) принимает вид


откуда получим

Отсюда следует: 1) векторы скоростей V PC и V c должны быть направлены в противоположные стороны; 2) из равенства модулей V PC - V c получаем ыРС= V c , отсюда найдем со = V c /PC= V c /R. В соответствии с направлением вектора V PC определяем направление дуговой стрелки со и показываем ее на чертеже (рис. 8.4, б).

Теперь возвращаемся к определению V K по равенству (а). Находим

Vкс = о КС - V^b/R. Зная направление угловой скорости со, изображаем вектор V KC перпендикулярно отрезку КС и выполняем построение параллелограмма на векторах V c и V KC (рис. 8.4, в). Так как в данном случае V c и V KC взаимно перпендикулярны, окончательно находим

2. Скорость точки D на ободе колеса определим из равенства V D = V C + V DC . Так как численно V DC - соR - V c , то параллелограмм, построенный на векторах V c и V DC , будет ромбом. Угол между V c и V DC равен 2а. Определив V D как длину соответствующей диагонали ромба, получим

Теорема о проекциях скоростей двух точек твердого тела

Согласно равенству (8.2) для двух_ произвольных точек А и В твердого тела справедливо равенство V B =V A +V BA , в соответствии с которым выполним построение, показанное на рис. 8.5. Проецируя это равенство на ось Az, направленную по А В, получим Ум + V BAz . Учитывая, что вектор V BA перпендикулярен прямой

А В, находим

Этот результат и выражает теорему: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны друг другу.


Отметим, что равенство (8.5) математически отражает то обстоятельство, что тело рассматривается как абсолютно твердое и расстояние между точками А и В не изменяется. Поэтому равенство (8.5) выполняется не только при плоскопараллельном, но и при любом движении твердого тела.

Задача 8.2. Ползуны А и В, соединенные стержнем с шарнирами на концах, перемешаются по взаимно перпендикулярным направляющим в плоскости чертежа (рис. 8.6, а). Определить при данном угле а скорость точки В, если известна скорость V A .

Решение. Проведем ось х через точки А и В. Зная направление V A ,

находим проекцию этого вектора на прямую АВ: V Ax - V A cos а (на рис. 8.6, б это будет отрезок Аа). Далее на чертеже от точки В откладываем ВЬ - Аа (так как отрезок Аа расположен на оси х вправо от точки А, то и отрезок ВЬ откладываем от точки В по оси х вправо). Восставляя в точке Ь перпендикуляр к прямой АВ, находим точку конца вектора V B .

Согласно теореме о проекциях V A cos а = K^cosp. Отсюда (учтя, что Р = 90° - а) окончательно получим V B = V A cos a/cos(90° - a) или V B = = V A ctg a.

Определение скоростей точек с помощью мгновенного центра скоростей

Для определения скоростей точек плоской фигуры выберем в качестве полюса какую-либо точку Р. Тогда, согласно формуле

(8.2), скорость произвольной точки М определяется как сумма двух векторов:

Если бы скорость полюса Р в данный момент времени была равна нулю, то правая часть этого равенства была бы представлена одним слагаемым У МР и скорость любой точки определялась бы как скорость точки М тела при вращении его вокруг неподвижного полюса Р.

Следовательно, если выбрать в качестве полюса точку Р, скорость которой в данный момент времени равна нулю, то модули скоростей всех точек фигуры будут пропорциональны их расстояниям до полюса Р, а направления векторов скоростей всех точек будут перпендикулярны прямым, соединяющим рассматриваемую точку и полюс Р. Естественно, что расчет по формулам (8.6) значительно проще расчета по общей формуле (8.2).

Точка плоской фигуры, скорость которой в данный момент времени равна нулю, называется мгновенным центром скоростей (МЦС). Легко убедиться, что если фигура движется непоступательно, то такая точка в каждый момент времени существует и при том единственная. Отметим, что мгновенный центр скоростей может быть расположен как на самой фигуре, так и на ее мысленном продолжении.

Рассмотрим способы определения положения мгновенного центра скоростей.

1. Пусть в момент времени t jum плоской фигуры известны ее угловая скорость со и скорость V A какой-нибудь ее точки А (рис. 8.7, а). Тогда, выбирая точку А в качестве полюса,_скорость_иско- мой нами точки Р можно определить по формуле V p = V A + Vp A -

Задача состоит в том^чтобы найти такую точку Р, у которой V P =0, значит, для нее V A +У РЛ =0 и отсюда У РА = -У А. Следовательно, для точки Р скорость У РА, которую точка Р получает при вращении фигуры вокруг полюса А, и скорость У А полюса А равны по модулю (У РА = У А) или озАР= У А и противоположны по направлению. Кроме того, точка Р должна лежать на перпендикуляре к вектору У А. Определение положения точки Р осуществляется таким построением: из точки А (рис. 8.7, б) восставим перпендикуляр к вектору У А и отложим на нем расстояние АР = У А /со в ту сторону от точки А, куда «покажет» вектор У А, если его повернуть на 90° в направлении дуговой стрелки со.

Мгновенный центр скоростей является единственной точкой плоской фигуры, скорость которой в данный момент времени равна нулю.

В другой момент времени мгновенным центром скоростей может быть уже другая точка плоской фигуры.

2. Пусть известны направления скоростей V A и У в (рис. 8.8, а) двух точек А и В плоской фигуры (причем векторы скоростей этих точек непараллельны), или известны элементарные перемещения этих точек. Мгновенный центр скоростей будет находиться в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек (или к элементарным перемещениям точек). Такое построение выполнено на рис. 8.8, б. Оно основано на том, что для любых точек А и В фигуры применимы положения (8.6):

Из этих равенств следует, что

Зная положение МЦС и угловую скорость тела, применив формулы (8.6), легко определить скорость любой точки этого тела. На- пример^для точки К (см. рис. 8.8, б) модуль скорость V K =coКР, вектор У к направлен перпендикулярно прямой КР в соответствии с

направлением дуговой стрелки ю.

Следовательно, скорости точек плоской фигуры определяются в данный момент времени так, как будто эта фигура вращается вокруг мгновенного центра скоростей.

3. Если скорости точек А и В плоской фигуры параллельны друг другу, то возможны три варианта, которые изображены на рис. 8.9. Для случаев, когда прямая АВ перпендикулярна векторам V А и V B (рис. 8.9, а, б), построения основываются на пропорции (8.7).


Если скорости точек Ли В параллельны, а прямая AB_nt перпендикулярна V А (рис. 8.9, в), то перпендикуляры к У А и V B параллельны и мгновенный центр скоростей находится в бесконечности (АР= оо); угловая скорость вращения фигуры со = VJAP = V A /cc = 0. В этом случае скорости всех точек фигуры в данный момент времени равны друг другу, т. е. фигура имеет распределение скоростей как при поступательном движении. Такое состояние движения тела называют мгновенно поступательным. Отметим, что в этом состоянии ускорения всех точек тела не будут одинаковыми.

4. Если плоское движение тела осуществляется путем его качения без скольжения по неподвижной поверхности (рис. 8.10), то точка касания Р будет являться мгновенным центром скоростей (см. задачу 8.1).

Задача 8.3. Плоский механизм состоит из стержней 7, 2, 3, 4 и ползуна В (рис. 8.11), соединенных друг с другом и с неподвижными опорами 0 { и 0 2 шарнирами; точка D находится в середине стержня АВ. Длины стержней: / 2 =0,4 м, / 2 = 1,2 м, / 3 = 0,7 м, / 4 = 0,3 м. Угловая скорость стержня 7 в заданном положении механизма со, = 2 с -1 и направлена против хода часовой стрелки. Определить V A , V B , V D , V E , oo 2 , co 3 , to 4 и скорость точки К в середине стержня DE (DK = КЕ).

Решение. В рассматриваемом механизме стержни 7, 4 совершают вращательное движение, ползун В - поступательное, а стержни 2, 3 -

плоскопараллельное движение.

Скорость точки А определим как принадлежащую стержню 7, совершающему вращательное движение:

Рассмотрим движение стержня 2. Скорость точки А определена, а направление скорости точки В обусловлено тем, что она принадлежит одновременно стержню 2 и пол-


зуну, движущемуся вдоль направляющих. Теперь, восставляя из точек А и В перпендикуляры к У А и направлению движения ползуна В, находим положение точки С 2 - МЦС стержня 2.

По направлению вектора У А, учитывая, что в рассматриваемом положении механизма стержень 2 вращается вокруг точки С 2 , определяем направление угловой скорости со 2 стержня 2 и находим ее числовое значение (о 2 = V a /AC 2 = 0,8/1,04 = 0,77 с -1 , где АС 2 - АВ sin 60° = 1,04 м (получим при рассмотрении ААС~,В).

Теперь определяем числовые значения и направления скоростей точек В и D стержня 2 (так как ABDC 2 равносторонний, то ВС 2 - DC 2 - - 0,6 м):

Рассмотрим движение стержня 3. Скорость точки D известна. Так как точка Е принадлежит одновременно и стержню 4, вращающемуся вокруг оси 0 4 , то У е 10 4 Е. Тогда, проводя через точки D и Е прямые, перпендикулярные скоростям V D wV E , находим положение точки С 3 - МЦС стержня

3. По направлению вектора V D , глядя из неподвижной точки С 3 , определяем направление угловой скорости со 3 , а ее числовое значение находим (предварительно определив из AZ)C 3 ? отрезок Z)C 3 = DEsin 30° = 0,35 м): со 3 = V d /C 3 D= 1,32 с -1 .

Для определения скорости точки К проведем прямую КС 3 и, учитывая, что АР КС 3 равносторонний (КС 3 = 0,35 м), вычислим У к = = 0,462 м/с, У к АКС 3 .

Рассмотрим движение стержня_4, вращающегося вокруг оси 0 4 . Зная направление и числовое значение V E , находим направление и значение угловой скорости со 4: со 4 = V e /0 4 E - 2,67 с.

Ответ: V A = 0,8 м/с, V B = V D = 0,462 м/с, V E = 0,8 м/с, со 2 = 0,77 с" 1 , со 3 = 1,32 с -1 , (о 4 = 2,67 с -1 , направления этих величин показаны на рис. 8.11.

Примечание. В механизме, состоящем из нескольких тел, каждое непоступательно движущееся тело имеет в данный момент времени свой мгновенный центр скоростей и свою угловую скорость.

Задача 8.4. Плоский механизм состоит из стержней 1, 2, 3 и катка, катящегося без скольжения по неподвижной плоскости (рис. 8.12, а). Соединения стержней между собой и стержня 3 к катку в точке D - шарнирные. Длины стержней: 1 { - 0,4 м, / 2 = 0,6 м, / 3 = 0,8 м. При данных углах а = 60°, В = 30° известны значения и направления угловой скорости со, = = 2 с и скорости центра О катка V 0 = 0,346 м/с, ZABD = 90°. Определить скорость точки В и угловую скорость со 2 .

Решение. Механизм имеет две степени свободы (его положение определяется двумя углами а и р, не зависящими друг от друга) и скорость точки В (общей точки стержней 2 и 3) зависит от скоростей точек А и D.

Рассматривая движение стержня /, находим направление и значение скорости точки A: V A = coj/j = 0,8 м/с, V a AjO { A.

Рассмотрим движение катка. Его мгновенный центр скоростей расположен в точке Р; тогда V D найдем из пропорции

Так как ADOP равнобедренный и острые углы в нем равны 30°, то DP- 2 OP cos 30° = ОРл/ 3. Из равенства (а) находим V D - 0,6 м/с. Вектор V D направлен перпендикулярно DP.

Так как точка В принадлежит одновременно стержням АВ и BD, то по теореме о проекциях скоростей должно быть: 1) проекция вектора У в на прямую А В У А (отрезок Аа на рис. 8.12, а), т. е. У А cos а = 0,4 м/с; 2) проекция вектора У в на прямую DB равна проекции на эту прямую вектора У 0 (отрезок Dd на рис. 8.12, а), т. е. У 0 cos у = 0,3 м/с (у = 60°).

Далее решаем графически. Откладываем от точки В в соответствующих направлениях отрезки ВЬ { = Аа и Bb 2 = Dd. Скорость точки В равна сумме векторов V B = Bb+ Bbj. Восставляем из точки Ь { перпендикуляр к ВЬ Х, а из


точки b 2 - перпендикуляр к ВЬ 2 . Точка пересечения этих перпендикуляров определяет конец искомого вектора V B .

Так как направления отрезков ВЬ и ВЬ 2 взаимно перпендикулярны, то

Определяем со 2 . На рис. 8.12, б показан так называемый план скоростей, который графически изображает векторное равенство

где векторы V A и V B определены (см. рис. 8.12, а), а направление V BA перпендикулярно стержню АВ. Из чертежа (рис. 8.12, б) находим

Теперь определяем со 2 = V ba /AB- 1,66 с -1 (направление со 2 - против хода часовой стрелки).

Ответ: V B - 0,5 м/с, со 2 = 1,66 с -1 .

Другой простой и наглядный метод определения скоростей точек плоской фигуры (или тела при плоском движении) основан на понятии о мгновенном центре скоростей.

Мгновенным центром скоростей (МЦС) называется точка плоской фигуры, скорость которой в данный момент времени равна нулю.

Если фигура движется непоступательно, то такая точка в каждый момент времени t существует и притом единственная. Пусть в момент времени t точки А и В плоскости фигуры имеют скорости и , непараллельные друг другу (рис. 2.21.). Тогда точка Р , лежащая на пересечении перпендикуляров Аа к вектору и Вb к вектору , и будет мгновенным центром скоростей, так как .

Рисунок 2.21

В самом деле, если , то по теореме о проекциях скоростей вектор должен быть одновременно перпендикулярен и АР (так как ), и ВР (так как ), что невозможно. Из этой же теоремы видно, что никакая другая точка фигуры в этот момент времени не может иметь скорость, равную нулю.

Если теперь в момент времени t взять точку Р за полюс. То скорость точки А будет

и так для любой точки фигуры.

Из этого следует еще, что и , тогда

= , (2.54)

т.е. что скорости точек плоской фигуры пропорциональны их расстоянию от мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1. Для определения мгновенного центра скоростей надо знать только направления скоростей, например, и каких-нибудь двух точек А и В плоской фигуры.

2. Для определения скорости любой точки плоской фигуры надо знать модуль и направление скорости какой-нибудь одной точки А фигуры и направление скорости другой её точки В.

3. Угловая скорость плоской фигуры равна в каждой момент времени отношению скорости какой-нибудь точки фигуры к её расстоянию от мгновенного центра скоростей Р:

Рассмотрим некоторые частные случаи определения МЦС, которые помогут решать теоретической механики.

1. Если плоскопараллельное движение осуществляется путем качения без скольжения одного цилиндрического тела по поверхности другого неподвижного, то точка Р катящегося тела, касающаяся неподвижной поверхности (рис. 2.22), имеет в данный момент времени вследствие отсутствия скольжения скорость, равную нулю (), и следовательно, является мгновенным центром скоростей.



Рисунок 2.22

2. Если скорости точек А и В плоской фигуры параллельны друг другу, причем линия АВ не перпендикулярна (рис.2.23,а), то мгновенный центр скоростей лежит в бесконечности и скорости всех точек // . При этом из теоремы о проекциях скоростей следует, что , т.е. , в этом случае фигура имеет мгновенное поступательное движение. , которое дает .

Уравнения плоского движения.

Основная теорема

Движение плоской фигуры в своей плоскости складывается из двух движений: поступательного вместе с произвольно выбранной точкой (полюсом), и вращательного вокруг этого полюса.

Положение плоской фигуры на плоскости определяется положением выбранного полюса и углом поворота вокруг этого полюса, поэтому плоское движение описывается тремя уравнениями:

Первые два уравнения (рис.5) определяют то движение, которое фигура совершала бы при φ = const, очевидно, что это движение будет поступательным, при котором все точки фигуры будут двигаться так же, как полюс А .

Третье уравнение определяет движение, которое фигура совершала бы при х А = const и у А = const, т.е. когда полюс А будет неподвижен; это движение будет вращением фигуры вокруг полюса А.

При этом вращательное движение не зависит от выбора полюса, а поступательное движение характеризуется движением полюса.

Зависимость между скоростями двух точек плоской фигуры.

Рассмотрим две точки А и В плоской фигуры. Положение точкиВ относительно неподвижной системы координат Оху определяется радиусом-вектором r B (рис.5):

r B = r A + ρ,

где r A - радиус-вектор точки А , ρ = АВ

вектор, определяющий положение точки В

относительно подвижных осей Ах 1 у 1 , перемещающихся поступательно вместе с полюсом А параллельно неподвижным осям Оху .

Тогда скорость точки В будет равна

.

В полученном равенстве величина является скоростью полюса А.

Величина равна скорости, которую точка В получает при = соnst, т.е. относительно осей Ах 1 у 1 при вращении фигуры вокруг полюса А . Введем для этой скорости обозначение :

Следовательно,

В
Скорость любой точки В плоской фигуры равна геометрической сумме скорости V A выбранного полюса А и скорости V BA точки во вращательном движении вокруг полюса (рис.6):

Скорость вращательного движения точки направлена перпендикулярно отрезку АВ и равна

Модуль и направление скорости точки В находится построением соответствующего параллелограмма (рис.6).

Пример 1. Найти скорости точек А, В и D обода колеса, катящегося по прямолинейному рельсу без скольжения, если скорость центра колеса С равна V C .

Решение. Выбираем точку С, скорость которой известна за полюс. Тогда скорость точки А равна

где и по модулю .

Значение угловой скорости ω найдем из условия того, что точка Р колеса не скользит по рельсу и, следовательно, в данный момент равна нулю V Р = 0 .

В данный момент скорость точки Р равна

Так как в точке Р скорости и направлены по одной прямой противоположные стороны и V Р = 0 , то V PC = V C , откуда получаем, что ω = V C . /R , следовательно, V AC = ω R = V C .



Скорость точки А является диагональю квадрата, построенного на взаимно перпендикулярных векторах и , модули которых равны, следовательно

Аналогично определяется скорость точки D. Скорость точки B равна

При этом скорости и равны по модулю и направлены по одной прямой, поэтому V B = 2V C .

Стержень АВ совершает плоское движение, которое можно представить как падение без начальной скорости под действием силы тяжести и вращение вокруг центра тяжести С с постоянной угловой скоростью .

Определить уравнения движения точки В , если в начальный момент стержень АВ был горизонтален, а точка В была справа. Ускорение силы тяжести q . Длина стержня 2l . Начальное положение точки С взять за начало координат, а оси координат направить, как указано на рисунке.

На основании соотношений (2) и(3) уравнения (1) примут вид:

Производя интегрирование и замечая, что в начальный момент t=0, x B =l и y B =0 ,получим координаты точки В в следующем виде.

Было отмечено, что движение плоской фигуры можно рассматривать как слагающееся из поступательного движения, при котором все точки фигуры движутся со скоростью полюсаА , и из вращательного движения вокруг этого полюса. Покажем, что скорость любой точки М фигуры складывается геометрически из скоростей, которые точка получает в каждом из этих движений.

В самом деле, положение любой точки М фигуры определяется по отношению к осям Оху радиусом-вектором (рис.30), где - радиус-вектор полюсаА , - вектор, определяю­щий положение точки М относительно осей , перемещающих­ся вместе с полюсом А поступательно (движение фигуры по отноше­нию к этим осям представляет собой вращение вокруг полюса А ). Тогда

В полученном равенстве величина есть скорость полюсаА ; величина же равна скорости , которую точка М получает при , т.е. относительно осей , или, иначе говоря, при вращении фигуры вокруг полюса А . Таким образом, из предыдущего равенства действительно следует, что

Скорость , которую точка М получает при вращении фигуры вокруг полюсаА :

где - угловая скорость фигуры.

Таким образом, скорость любой точки М плоской фигуры геометрически складывается из скорости какой-нибудь другой точкиА , принятой за полюс, и скорости, которую точка М получает при вращении фигуры вокруг этого полюса. Модуль и направление скорости находятся построением соответствующего параллело­грамма (рис.31).


Рис.30 Рис.31

23. Фактически уравнением поступательного движения твердого тела является уравнение второго закона Ньютона: Используя уравнения:

И получаем .

24.В этом случае составляющие

– момента внешних сил, направленные вдоль x и y , компенсируются моментами сил реакции закрепления .

Вращение вокруг оси z происходит только под действием

6.4 6.5

Пусть некоторое тело вращается вокруг оси z .Получим уравнение динамики для некоторой точки m i этого тела находящегося на расстоянии R i от оси вращения. При этом помним, что и

Направлены всегда вдоль оси вращения z, поэтому в дальнейшем опустим значок z .





Так как у всех точек разная, введем, вектор угловой скорости причем


Так как тело абсолютно твердое, то в процессе вращения m i иR i останутся неизменными. Тогда:

Обозначим I i – момент инерции точки находящейся на расстоянии R от оси вращения:

Так как тело состоит из огромного количества точек и все они находятся на разных расстояниях от оси вращения, то момент инерции тела равен:

где R – расстояние от оси z до dm. Как видно, момент инерции I – величина скалярная.

Просуммировав по всем i- ым точкам,

получим или - Это основное уравнение

динамики тела вращающегося вокруг неподвижной оси .

26) Момент импульса твердого тела.


Момент импульса есть векторная сумма моментов импульсов всех материальных точек тела относительно неподвижной оси.

Если ось вращения твердого тела закреплена, то момент силы перпендикулярный этой оси ()за счет сил трения в подшипниках всегда будет равняться нулю.

Скорость изменения момента импульса твердого тела вдоль оси вращения, которая закреплена, равняется результирующему моменту внешних сил, направленному вдоль этой оси.

– момент инерции.

28)Момент сил трения качения – закон Кулона. Коэффициент трения качения.

Трение качения. Существование трения качения можно установить экспериментально, например, при исследовании качения тяжелого цилиндра радиуса на горизонтальной плоскости.

Если цилиндр и плоскость - твердые тела с шероховатыми поверхностями (рис. 55, a), то их касание будет происходить в точке, сила N уравновешивает силу тяжести P, а горизонтальная сила Q и сила трения F образуют пару сил (Q,F) под действием которой цилиндр должен начинать движение при любых величинах силы Q. В действительности же цилиндр начинает движение после того, как величина силы Q превысит предельное значение Ql.

Этот факт можно объяснить, если предположить, что цилиндр и плоскость деформируются. Тогда их контакт будет происходить по малой площадке или лунке (на рис. 55, b малая площадка изображена своим сечением). При увеличении силы Q центр давления будет перемещаться из середины сечения вправо. В результате образуется пара сил (P,N), которая препятствует началу движения цилиндра. В состоянии предельного равновесия на цилиндр действуют пара сил (Ql,F) с моментом Ql·r и уравновешивающая ее пара (P,N) с моментом N·δ, где δ - значение максимального смещения. Из равенства моментов пар сил находим (6)

Пока Q Ql начинается качение.

Обычно рис. 55, b упрощают, не изображая на нем смещения точки приложения нормальной реакции, добавляя к силам на рис. 55, a пару сил, препятствующую качению цилиндра, как показано на рис. 55, c.

Момент этой пары сил называется моментом трения качения , он равен моменту пары сил (P,N): (7)

Входящая в формулы (6) и (7) величина максимального смещения точки приложения нормальной реакции δ называется коэффициентом трения качения. Он имеет размерность длины и определяется экспериментально. Приведем приближенные значения этого коэффициента (в метрах) для некоторых материалов: дерево по дереву δ = 0,0005-0,0008; мягкая сталь по стали (колесо по рельсу) - 0.00005; закаленная сталь по стали (шарикоподшипник) - 0.00001.

Отношение δ/r в формуле (6) для большинства материалов значительно меньше коэффициента трения покоя f0 . Поэтому в технике, когда это возможно, стремятся скольжение заменить качением (колеса, катки, шарикоподшипники и т.п.).

Закон Амонтона - Кулона

Основная статья: Закон Кулона (механика)

Не путать с законом Кулона!

Основной характеристикой трения является коэффициент трения μ, который определяется материалами, из которых изготовлены поверхности взаимодействующих тел.

В простейших случаях сила трения F и нормальная нагрузка (или сила нормальной реакции) Nnormal связаны неравенством обращающимся в равенство только при наличии относительного движения. Это соотношение называется законом Амонтона - Кулона.

Скорость произвольной точки М фигуры определим как сумма скоростей, которые точка получает при поступательном движении вместе с полюсом и вращательном движении вокруг полюса.

Представим положение точки М как (рис.1.6).

Продифференцировав это выражение по времени получим:

, т.к.

.

При этом скорость v MA . которую точка М получает при вращении фигуры вокруг полюса А , будет определяться из выражения

v MA =ω ·MA ,

где ω - угловая скорость плоской фигуры.

Скорость любой точки М плоской фигуры геометрически складывается из скорости точки А , принятой за полюс, и скорости, точки М при вращении фигуры вокруг полюса. Модуль и направление скорости этой скорости находятся построением параллелограмма скоростей.

Задача 1

Определить скорость точки А, если скорость центра катка равна 5м/с, угловая скорость катка . Радиус катка r=0,2м, угол . Каток катиться без скольжения.

Так как тело совершает плоскопараллельное движение, то скорость точки А будет состоять из скорости полюса (точка С ) и скорости полученной точкой А при вращении вокруг полюса С .

,

Ответ:

Теорема о проекциях скоростей двух точек тела, движущего плоскопараллельно

Рассмотрим какие-нибудь две точки А и В плоской фигуры. Принимая точку А за полюс (рис.1.7), получаем

.

Отсюда, проецируя обе части равенства на ось, направленную по АВ , и учитывая, что вектор перпендикулярен АВ , находим

v B ·cosβ =v A ·cosα+ v В A ·cos90° .

т.к. v В A ·cos90°=0 получаем: проекции скоростей двух точек твердого тела на ось, проходящую через эти точки, равны.

Задача 1

Стержень АВ скользит по гладкой стене вниз и гладкому полу, скорость точки A V A =5м/с, угол между полом и стержнем АВ равен 30 0 . Определить скорость точки В.


Определение скоростей точек плоской фигуры с помощью мгновенного центра скоростей

При определении скоростей точек плоской фигуры через скорость полюса, скорость полюса и скорость вращательного движения вокруг полюса могут быть равны по величине и противоположны по направлению и существует такая точка Р, скорость которой в данный момент времени равна нулю , называют ее мгновенным центром скоростей.

Мгновенным центром скоростей называется точка, связанная с плоской фигурой, скорость которой в данный момент времени равна нулю.

Скорости точек плоской фигуры определяются в данный момент времени так, как если бы движение фигуры было мгновенно вращательным вокруг оси проходящей через мгновенный центр скоростей (рис. 1.8).

v A =ω ·PA ; ().

Т.к. v B =ω ·PB ; (), то w= v B /PB =v A /PA

Скорости точек плоской фигуры пропорциональны кратчайшим расстояниям от этих точек до мгновенного центра скоростей.

Полученные результаты приводят к следующим выводам:

1) для определения положения мгновенного центра скоростей надо знать величину и направления скорости и направление скорости каких-нибудь двух точек А и В плоской фигуры; мгновенный центр скоростей P находится в точке пересечения перпендикуляров, восставленных из точек А и В к скоростям этих точек;

2) угловая скорость ω плоской фигуры в данный момент времени равна отношению скорости к расстоянию от нее до мгновенного центра Р скоростей: ω =v А /;

3) Скорость точки по отношению к мгновенному центру скоростей P укажет направление угловой скорости w.

4) Величина скорости точки прямопропорциональна кратчайшему расстоянию от точки В к мгновенному центру скоростей Р v А = ω·ВР

Задача 1

Кривошип ОА длиной 0,2м вращается равномерно с угловой скоростью ω=8 рад/с . К шатуну АВ в точке С шарнирно прикреплен шатун CD. Для заданного положения механизма определить скорость точки D ползуна, если угол .

Движение точки В ограничено горизонтальными направляющими, ползун может совершать только поступательное движение по горизонтальным направляющим. Скорость точки В направлена в туже сторону что и . Так как две точки шатуна имеют одинаковое направление скоростей, то тело совершает мгновенно поступательное движение, и скорости всех точек шатуна имеют одинаковое направление и значение.