Генетический метод расселения народов недостатки. Генетическое разнообразие народов. Адаптация к различным условиям обитания

06.09.2020 Мода и стильные тенденции

ГЕНЕТИКА ЧЕЛОВЕКА (демографические аспекты), раздел генетики, изучающий явления наследственности и изменчивости у человека. Материальной основой наследственности у человека, как и у других организмов, являются гены, расположенные в хромосомах и передающиеся в поколениях с помощью половых клеток. Каждый из генов представлен в организме дважды - один получен от отца, другой - от матери. В зависимости от различия или тождества унаследованных генов человек соответственно гетерозиготен (т.е. отцовский и материнский гены в данной паре не одинаковы) или гомозиготен (отцовский и материнский гены в данной паре одинаковы). Вероятность гомозиготности по совокупности генов из-за большого их числа (по разным оценкам, 105-106) крайне мала. Доля генов в гомозиготном состоянии у человека возрастает, если его родители имеют общих предков, от которых унаследовали идентичные гены. Такие случаи, регулируясь в человеческом обществе брачными традициями и законами, встречаются сравнительно редко, и, как правило, индивидуальный набор генов - генотип - формируется сочетанием родительских генов, происходящих из разных частей генофонда - общей совокупности генов популяции. Индивидуальное разнообразие набора генов огромно и образует биол. фундамент уникальности и неповторимости человеческой личности.

Один из важнейших разделов генетики человека - популяционная генетика человека. В отличие от популяций других видов популяция человека - объект действия и продукт не только естественно-исторического, но и общественно-исторического процесса. Воспроизводство генов человека, будучи, с одной стороны, сугубо биологическим процессом, с другой - социально обусловлено и неотделимо от демографического развития и воспроизводства народонаселения. Передача генетической информации в поколениях, ее распределение в пространстве расселения населения, изменение в ходе миграций, переселений, взаимодействий населения с окружающей средой - все эти движения генетического материала у человека связаны с демографическими процессами. Таким образом, популяционную генетику человека можно рассматривать как демографическую генетику, т. е. область взаимодействия генетики и демографии, исследующую генетические последствия демографических процессов.

Генофонд популяции, представленный в каждом поколении разнообразными генотипами, не остается постоянным во времени, т. к. благодаря дифференциальной рождаемости, смертности и миграции носители генов одного поколения в разной степени передают свои гены новым поколениям. Изменение популяционного генофонда, вызванное неодинаковым участием носителей разных генов в процессе воспроизводства, считается в общей теории популяционной генетики основным проявлением естественного отбора, который меняет структуру генофонда в сторону большего соответствия условиям среды. Другими факторами, действующими на изменения генофонда в популяциях человека, являются мутации, миграции и дрейф генов. Мерилом биологически нормальной, естественной скорости изменения генофонда является темп естественного мутационного процесса. Эффекту мутаций собственных генов генофонда эквивалентен эффект миграций генов из других популяций с существенно иным генофондом, т. к. при этом также возникают новые, ранее несвойственные популяции генотипы. Другое последствие регулярных миграций генов - стирание генетических различий между популяциями, потеря ими генетического своеобразия, возникшего в ходе самостоятельного развития и специфического приспособления к локальным условиям среды. Миграция генов осуществляется через миграцию их носителей. Роль миграции в истории развития народонаселения едва ли поддается однозначной оценке и трактовке, но некоторые ее генетические последствия очевидны, ибо значительная часть современного мирового населения представлена генетически смешанными популяциями. В несколько ином плане та же проблема возникает в связи с процессом урбанизации, вызывающим отлив населения из различных местных популяций и его прилив в центры урбанизации.

Даже в отсутствии мутаций, отбора, миграций генов (что почти невероятно) генофонд популяции все же сохраняет возможность изменяться. Происходит это в силу так называемого дрейфа генов, или генетико-автоматического процесса, - такого изменения генетической структуры популяции, которое вызывается случайными причинами, например, малыми размерами популяции. Дрейф генов наблюдается в численно небольших и преимущественно эндогамных популяциях - изолятах, где имеет место значительное несоответствие между потенциально всегда большим разнообразием возможных генотипов и малым числом реальных носителей генов. В силу малочисленности популяции в каждом поколении реализуется лишь малая часть возможных генотипов, и формирование генофонда нового поколения приобретает характер случайного выбора ограниченного числа генов из родительского генофонда. Популяционная генетика трактует дрейф генов как процесс, не зависящий от состояния среды. Вместе с тем именно на примере малых замкнутых популяций человека можно увидеть, что численность популяции определенным образом связана с уровнем общественно-экономического и культурного развития, а также с характером взаимодействия популяции со средой обитания. Таким образом, дрейф генов, зависящий от размера популяции, оказывается зависимым и от состояния общественной и природной среды.

Различные генетические процессы, рассмотренные выше порознь, в реальных популяциях представляют взаимосвязанные компоненты единого генетического процесса.

Основным источником информации о генетических процессах в населении является генетический полиморфизм, т. е. одновременное присутствие в популяции двух и более форм одного и того же наследственного признака или свойства. Он исследуется с помощью генетических маркеров - наследственных признаков, свидетельствующих о присутствии в генотипе человека тех или иных генов, обусловливающих эти признаки. Соответственно применяются разнообразные экспериментальные методы изучения генетических маркеров как источников информации о генотипах людей и генофондах популяций. Важную информацию о степени замкнутости и своеобразии генофонда в эндогамных популяциях, об уровне наследств, полиморфизма и т. п. позволяет получить генеалогия популяции, а также архивные и текущие записи актов гражданского состояния. Источником информации в генетике человека служат и такие сведения о населении, как его численность, брачность, семейная структура, рождаемость, смертность, расселение и пространств, структура, миграции. Гены, носителями которых являются современные поколения, дошли до них из глубокого прошлого, и поэтому генетика человека использует также данные археологии, этнографии и истории.

Генетические аспекты численности и демографической структуры населения . Население мира в целом, как и население, слагающее отдельные этносы, имеет сложную иерархическую популяционную структуру. В основании этой иерархии находятся элементарные популяции - простейшие единицы всей популяционной системы человечества. На нижнем уровне этой системы преобладают популяции сельского типа с численностью от десятков и сотен до тысяч человек. К этому же уровню относят и городские популяции с численностью от тысяч до миллионов человек. При различной численности и сельские, и городские популяции однотипны с том отношении, что лишены постоянных внутрипопуляционных барьеров, которые расчленяли бы их генофонд на относительно независимые и устойчиво воспроизводящиеся в поколениях части (в больших городах капиталистических стран в значительной степени сохраняется расчлененность генофонда в силу расовых, национальных, кастовых, религиозных и других различий). Число генов какого-либо типа в генофонде элементарной популяции вдвое больше числа составляющих ее людей. Однако с формированием генофонда следующего поколения связана лишь часть генов, носители которых - люди репродуктивного возраста. Из них не все вступают в брак, а из вступивших не все имеют детей или имеют разное их число и, наконец, не все дети доживают до репродуктивного возраста. Это означает, что даже гены, образующие ту часть генофонда, которая обеспечивает его воспроизводство, воспроизводят себя в разном числе копий. Чем меньшая часть генов родительского поколения воспроизвела себя в большем числе копий, тем больше генетические различия между поколениями популяции. В связи с этим генетически значимой является не общая численность популяции, а ее т. н. генетически эффективная численность - параметр, учитывающий все составляющие процесса воспроизводства - неравное соотношение полов, их неравную плодовитость, репродуктивную активность, ее продолжительность, различную в разных семьях выживаемость детей.

Отношение генетически эффективной численности к общей численности популяции зависит не только от биологических, но и от социальных факторов. В популяциях сельского типа это отношение составляет обычно около 1/3. В городских популяциях под выравнивающим влиянием социальной среды на репродуктивные показатели семей доля генетически эффективной численности может резко возрастать даже при сокращении воспроизводства и общего размера популяции. Размер популяции в свою очередь влияет на скорость генетических изменений в популяции: чем он численно больше, тем медленнее изменяется генетическая структура популяции. Поэтому там, где население состоит из большого числа элементарных популяций, наблюдаются значительные генетические различия между ними.

Генетические аспекты брачности . Многие моменты математического моделирования генетических процессов в популяциях связаны с принципом панмиксни (полной случайности образования брачных пар). В популяциях человека этот принцип реализуется с большими ограничениями. Общество, запрещая или поощряя, в зависимости от традиций и законов, родственные браки, регулирует степень панмиксии и воздействует на генетический процесс. В разных общественно-экономических и историко-культурных условиях различна и широта брачного круга, а следовательно, и уровень генетического разнообразия в нем. Ориентируясь, хотя бы частично, на психофизиологические (темперамент и т. д.), морфологические (тип телосложения, расовые особенности) и др. свойства, прямо или косвенно связанные с генотипом, человек тем самым производит неслучайный выбор из окружающего его разнообразия генотипов. Наибольшая избирательность наблюдается при близкородственных браках - инбридинге. Особенно высока его частота в изолятах, где преобладают внутренние (эндогамные) браки (их частота достигает почти 100%). В этом случае сама традиция эндогамии, несмотря на запрещение явно родственных браков, неминуемо порождает инбридинг. Чем меньше генетически эффективная численность изолята, тем с течением времени все более родственными становятся браки, и все более увеличивается генетическая однородность популяции. Уровень наследственного полиморфизма в таком изоляте сокращается, и популяция оказывается высокоадаптированной к узкому диапазону условий окружающей среды. Известны случаи, когда популяции, оказавшись на исторических окраинах мира и утратив в условиях изоляции некоторую долю наследственного полиморфизма (в частности, иммунологического), при контакте с пришлыми группами населения ценой больших потерь адаптировались к изменившейся эпидемиологической обстановке.

Широта брачного круга может сказываться и на таких признаках потомства, которые лишь частично определяются генотипом. С широтой брачного круга, т. е. с уровнем генетических различий родителей, до определенной степени связаны показатели физического развития детей, выносливости, устойчивости к стрессу, трудоспособности. В уровне этих различий, судя по влиянию на потомство, существует свой оптимум, означающий существование оптимума и в размерах круга брачных связей.

Генетические аспекты семейной структуры . Главный метод изучения закономерностей наследственной передачи признаков у человека - анализ распределения признаков у членов семьи в зависимости от степени их родства. Если признак, будучи генетическим маркером, не влияет на подбор супружеских пар, то доля родительских пар с определенным сочетанием маркирующих признаков обусловлена только частотой, с которой распространены в населении гены, кодирующие эти признаки. Например, группы крови человека, обозначаемые символами О(I), А(II), В(III) и AB(IV), кодируются тремя аллельными генами О, А и В. Распространение этих трех генов в мировом населении изучено особенно хорошо в силу их значимости для службы переливания крови. Семейная структура населения локальной ли популяции, народа, страны или мира в целом в отношении признака групп крови представлена 16 генетически различными типами супружеских пар. Частота каждого из этих типов всецело зависит от частоты трех аллельных генов А, В и О. Так, зная, что в Западной Европе эти гены представлены в генофонде в соотношении 26% (А), 6% (В), 68% (О), а в Южной и Восточной Азии в соотношении 20% (А), 20% (В) и 60% (О), можно заранее предсказать, что семья, где, например, мать группы крови О(I) и отец группы крови А (II), в Западной Европе составляют ок. 20%, а в Южной и Восточной Азии - около 10% всех супружеских пар. В семьях с супружескими парами этого типа часты случаи патологии повторных и многократных беременностей и родов на почве иммуногенетической несовместимости родителей. Социально значимые аспекты одного этого факта проявления генетических закономерностей в семейной структуре населения очевидны, Таким образом, существует связь между частотой, с которой гены представлены в генофонде населения, частотами генотипов людей и частотами генетически различных типов семей, передающих в следующее поколение определенную долю генов генофонда. Величина помех в передаче генетической информации в поколениях обратно пропорциональна числу детей в семьях и прямо пропорциональна степени различий семей по числу детей.

Родство в семье имеет определенную генетическую меру, определяющую долю общих генов у любых двух членов семьи, связанных общностью (даже отдаленной) происхождения. Наиболее распространенные типы родства могут быть выражены долей генов, унаследованных от общего предка. Это имеет значение в вопросах регулирования браков, в случае наследств, заболеваний и при медико-генетическом консультировании относительно риска заболевания, отмеченного в семье.

Генетические аспекты рождаемости . Индивидуальное развитие (онтогенез) человека находится под генетическим контролем, в наибольшей мере проявляющимся в ранние фазы - от образования зиготы (оплодотворенной яйцеклетки) до рождения и раннего детства. Такой контроль наиболее ясно выступает в явлении генетического определения (детерминации) пола системой двух так называемых половых хромосом (одной, полученной от отца, другой - от матери). Генетическая детерминация пола происходит в момент слияния родительских половых клеток и зависит от того, в каком сочетании половые хромосомы родителей оказались в новой зиготе. Генетически контролируется также взаимодействие плода с материнским организмом. По оценкам, не менее 10% всех зачатий оканчивается спонтанными абортами, обусловленными генетической несовместимостью матери и плода. Менее выраженная генетическая несовместимость сказывается в осложненном протекании беременности и родов. Наиболее известный пример проявления генетических факторов в беременности и рождаемости - резус-несовместимость матери и плода, а значит и супругов, возникающая в силу полиморфизма генов, контролирующих резус-группы крови. Этот вид генетической несовместимости особенно част в населении Европы, Неравная плодовитость различных генотипов способна в ряду поколений изменить генофонд путем преимущественного распространения одних и убыли других генов.

Генетические аспекты смертности . Одни гены, унаследованные человеком от родителей, функционируют на протяжении всей жизни, другие - лишь на определенном этапе онтогенеза, третьи, присутствуя в генотипе, могут так и не проявиться в фенотипе. Хотя все гены не меняются в течение жизни организма, в разных возрастных группах населения наблюдаются различия в частоте разных генотипов. Причина этого в неодинаковой выживаемости индивидуальных генотипов. Она наиболее очевидна, когда организм оказывается носителем так называемых летальных генов, приводящих к его гибели. В других случаях определенные генотипические комбинации в определенной среде в той или иной мере снижают жизнеспособность и тем самым влияют на индивидуальную продолжительность жизни. В популяциях, существующих в стабильной среде, повышенная смертность отдельных генотипов компенсируется их повышенной плодовитостью и, таким образом, не затрагивает генетических различий между поколениями. В иных условиях изменение частоты генотипов в популяции отражает направление ее генетической адаптации к изменениям окружающей среды. В человеческом обществе, прилагающем максимум усилий в борьбе со смертностью, генетические причины смертности в наибольшей мере сказываются на начальных этапах онтогенеза.

Причиной неодинаковой выживаемости генотипов является также различная степень устойчивости и подверженности людей заболеваниям, хотя преимущество одних генотипов перед другими в этом отношении не является ни абсолютным, ни постоянным. Неравная жизнеспособность разных генотипов - один из механизмов, поддерживающий наследственный полиморфизм в популяциях человека, причем величина различий в степени жизнеспособности обычно порядка одного - нескольких %. В некоторых случаях (при появлении в среде патогенного фактора) соотношение в выживаемости генотипов достигает десятков %. Наиболее известный пример такого рода связан с серповидно-клеточной анемией - болезнью, первопричина которой в мутации одного из генов, кодирующих синтез гемоглобина. Если у какого-либо индивида в обеих гомологичных хромосомах присутствует мутантный ген (HbS), то такой индивид страдает тяжелой анемией и, как правило, не доживает до зрелости. Таким образом, при генотипе HbS HbS весь гемоглобин принадлежит к аномальному типу и разница в выживании такого генотипа по сравнению с нормальным НbA НbA составляет практически 100%. Однако в условиях тропической Африки и субтропического Средиземноморья разница в выживании меньше 100% в силу низкой устойчивости нормального генотипа НbA НbA к поражению малярийным плазмодием, для развития которого аномальный гемоглобин представляет менее подходящую среду, чем нормальный. Наиболее жизнестойки индивиды с генотипом HbA HbS, у которых ген НbA обеспечивает образование нормального гемоглобина, а ген HbS защищает от поражения малярийным плазмодием.

Генетические аспекты воспроизводства населения . В понятиях генетики человека воспроизводство населения есть воспроизводство генов человека в ходе смены поколений. Генетически ключевыми единицами в воспроизводстве населения являются элементарные популяции, дифференцированный рост которых в ходе воспроизводства ведет к неодинаковому распространению в населении генов из того или иного генофонда. Поскольку элементарные популяции человека не существуют вне этносов, в их неравном воспроизводстве отражено неравное же воспроизводство этнических генофондов, необратимо меняющее генетические свойства населения, что сказывается не только в постепенном изменении физического облика поколений, но и в нарушении устойчивости к патогенным факторам среды. Генетически значимая единица времени в воспроизводстве - поколение. В воспроизводстве генов нового поколения участвуют обычно 2 из 3-4 одновременно сосуществующих поколений, что сокращает возможность резких изменений в генетической структуре нового поколения и обеспечивает большую генетическую преемственность между поколениями. Охрана генетических механизмов воспроизводства - ключевое условие поддержания нормального физического состояния поколений. Посредством воспроизводства населения из отдаленного прошлого в настоящее и будущее передаются древние гены, обусловливающие физическое и психическое единство и целостность человечества во всем его многообразии. Воспроизводством могут быть подхвачены и новые гены, возникающие в результате мутаций. Систематический контроль за частотой генных мутаций - один им методов оценки генетического состояния среды и нормального хода воспроизводства.

Генетические аспекты миграции и расселения населения . Миграция населения приводит к миграции генов человека. Миграция генов в популяцию, изменяя генофонд, формируя новые генотипы, меняя установившиеся в поколениях соотношения приспособлеyнностей генотипов, усиливая дифференциальную плодовитость и выживаемость, выступает как фактор, воздействующий на течение генетического процесса в популяции. Различают интенсивность и генетическая эффективность миграции. При одинаковой интенсивности генетическая эффективность миграции тем больше, чем больше генетическое своеобразие популяций, обменивающихся генами, а генетическое своеобразие тем больше, чем больше размерностей у пространства, в котором происходит миграция. Социальная природа человека способствует увеличению числа размерностей миграционного пространства свыше двух - трех, свойственных популяциям других организмов, однако она же создает условия и стимулы к преодолению этого пространства, разделяющего популяции. Негритянское гетто Нью-Йорка, азиатские кварталы Сан-Франциско, Ист-Энд и Уэст-Энд Лондона, Замоскворечье и Белый город дореволюционной Москвы - все это не столько территориально, сколько социально разобщенные пространства, в которых происходят миграции генов, часто однонаправленные (например, от белых американцев к черным, но почти никогда - обратно). Преодоление такого пространства оказывается часто более трудным, чем преодоление географических расстояний. Когда миграция перестает зависеть от любого рода расстояний между популяциями, ее влияние, нивелирующее генетическое разнообразие популяций, становится максимальным. В популяциях, генетическое развитие в которых протекает по стационарному типу, миграция выступает в качестве фактора, регулирующего уровень генетического разнообразия, необходимый для поддержания адаптационной пластичности населения в изменяющейся окружающей среде. Этот уровень оказывается единым для коренного населения разных континентов и указывает на то, что в ходе истории был выработан оптимальный режим для всех генетических процессов в населении. Такой режим обеспечивает распределение всего эволюционно накопленного генетического разнообразия населения на внутрипопуляционные и межпопуляционные компоненты примерно в соотношении 90% а 10%. Такое же соотношение обнаружено в различных популяциях животных и растений, что подчеркивает его уникальную эволюционную важность для выживания. Соотношение внутри- и межпопуляционного генетического разнообразия легко вычисляется из демографических данных о миграции и численности населения. Поэтому эти данные могут служить для генетической оптимизации миграции населения и демографических процессов в целом.

В череде поколений относительно изолированного автохтонного развития генофонд каждой популяции и каждой группы мирового населения приобретает отличительные черты. Так сложились, например, существенно разные генофонды населения на территории СССР к 3ападу и Востоку от Урала, проявляющиеся даже в антропологических типах. Вместе с тем генофонд коренного населения обширного района между Волгой и Обью являет промежуточные черты, сложившиеся в результате длившегося тысячелетиями просачивания и миграций генов между европейскими и азиатскими частями общего генофонда древнего населения нашей страны. В эпоху Великого переселения народов миграция масс населения центрально-азиатского и южно-сибирского происхождения привела к широкому распространению генов из азиатского генофонда среди населения Европейской части СССР и Европы в целом. Последствия этих миграционных процессов древности до сих пор отражены в геногеографии населения Северной Евразии. Считается, что вызванная этими миграциями перестройка генофонда населения Европы сопровождалась изменением адаптационных свойств генотипов людей. Это проявилось, в частности, в распространении в населении Европы резус-несовместимости матери и плода, которая не встречается в Азии и очень редка на крайнем 3ападе Европы у басков. Одно лишь это «эхо» древних демографических процессов, нарушивших естественный ход и направление генетического развития населения Европы, требует сегодня особых профилактических мероприятий по охране материнства и детства. В геногеографии мирового населения отражены и многие другие события мировой демографической истории.

Обращенная в будущее, генетика человека дает ключ к пониманию и оценке возможных отдаленных генетических последствий современных демографических процессов.

Ю.Г. Рычков.

Демографический энциклопедический словарь. - М.: Советская энциклопедия. Главный редактор Д.И. Валентей. 1985.

Литература:

Ниль Дж., Шэлл У., Наследственность человека, пер. с англ. М. 1958; Штерн К, Основы генетики человека, пер. с англ., М. 1965; Маккьюсик В., Генетика человека, пер. с англ., М. 1967; Бочков Н. П, Генетика человека, М. 1978; Л и Ч., Введение в популяц. генетику, пер. с англ., М. 1978; Беляев Д. К., Совр. наука и проблемы исследования человека, «Вопросы философии», 1981, № 3.

Sforza L. L., Воrimer W. F., The genetics of human populations, S. F., 1977.

Причины появления
генетических различий между популяциями

Люди, живущие в разных концах Земли, различаются многими
признаками: языковой принадлежностью, культурными традициями, внешностью,
генетическими особенностями. Каждая популяция характеризуется своим набором
аллелей (различных состояний гена, соответствующих различным состояниям
признака, причем некоторые аллели могут быть уникальными для этнической группы
или расы) и соотношением их популяционных частот.

Генетические характеристики народов зависят от их истории и
образа жизни. В изолированных популяциях, не обменивающихся потоками генов (то
есть не смешивающихся из-за географических, лингвистических или религиозных
барьеров), генетические различия возникают за счет случайных изменений частот
аллелей и благодаря процессам позитивного и негативного естественного отбора.
Без действия каких-либо других факторов случайные изменения генетических
характеристик популяций обычно невелики.

Значительные изменения частот аллелей могут возникать при
сокращении численности популяции или отселении небольшой группы, которая дает
начало новой популяции. Частоты аллелей в новой популяции будут сильно зависеть
от того, каким был генофонд основавшей ее группы (так называемый эффект основателя).
С эффектом основателя связывают повышенную частоту болезнетворных мутаций в
некоторых этнических группах.

Например, один из видов врожденной глухоты вызывается у
японцев мутацией, возникшей однократно в прошлом и не встречающейся в других
регионах мира, то есть все носители получили мутацию от общего предка, у
которого она возникла. У белых австралийцев глаукома связана с мутацией,
принесенной переселенцами из Европы. У исландцев найдена мутация,
повышающая.риск развития рака и восходящая к общему прародителю. Аналогичная
ситуация обнаружена у жителей острова Сардиния, но мутация у них другая,
отличная от исландской. Эффект основателя является одним из возможных
объяснений отсутствия у индейцев Южной Америки разнообразия по группам крови:
преобладающая группа крови у них – первая (частота ее более 90%, а во многих
популяциях – 100%). Так как Америка заселялась небольшими группами, пришедшими
из Азии через перешеек, когда-то соединявший эти материки, возможно, что в
популяции, давшей начало коренному населению Нового Света, другие группы крови
отсутствовали.

Слабовредные мутации могут долго поддерживаться в популяции,
тогда как мутации, значительно снижающие приспособленность индивида,
отсеиваются отбором. Показано, что болезнетворные мутации, приводящие к более
тяжелым формам наследственных заболеваний, обычно эволюционно молоды. Давно
возникшие мутации, длительное время сохраняющиеся в популяции, связаны с более
легкими формами болезни.

Популяции адаптируются к условиям обитания в результате
отбора путем как фиксации случайно возникших новых мутаций (то есть новых
аллелей), повышающих приспособленность к этим условиям, так и изменения частот
существующих аллелей. Разные аллели обусловливают разные варианты фенотипа,
например, цвета кожи или уровня холестерина в крови. Частота аллеля,
обеспечивающего адаптивный фенотип (скажем, темная кожа в зонах с интенсивным
солнечным облучением), возрастает, так как его носители жизнеспособнее в данных
условиях. Адаптация к различным климатическим зонам проявляется как вариация
частот аллелей комплекса генов, географическое распределение которых
соответствует этим зонам. Самый заметный след в глобальном распределении
генетических вариаций оставили миграции народов при расселении от африканской
прародины.

Происхождение и
расселение человека

Ранее историю появления вида Homo sapiens на Земле
реконструировали на основе палеонтологических, археологических и
антропологических данных. В последние десятилетия появление
молекулярно-генетических методов и исследования генетического разнообразия
различных народов позволили уточнить многие вопросы, связанные с происхождением
и расселением людей современного анатомического типа.

Молекулярно-генетические методы, применяемые для
восстановления событий демографической истории, сходны с лингвистическими
методами реконструкции праязыка. Время, прошедшее с того момента, когда два
родственных языка разделились (то есть перестал существовать их общий предковый
праязык), оценивают по количеству различающихся слов, появившихся за период
раздельного существования этих языков. Аналогично время существования общей
предковой популяции для двух современных народов оценивают по количеству
различий (мутаций), накопившихся в ДНК представителей этих народов. Так как
скорость накопления мутаций в ДНК известна, по числу мутаций, различающих две
популяции, можно определить, когда они разошлись.

Дату расхождения популяций устанавливают с помощью так
называемых нейтральных мутаций, не влияющих на жизнеспособность индивида и не
подверженных действию естественного отбора. Такие мутации найдены во всех
участках генома человека, но чаще всего в филогенетических исследованиях
рассматривают мутации в ДНК, содержащейся в клеточных органеллах – митохондриях
(мтДНК).

Первым использовал мтДНК для реконструкции истории
человечества американский генетик Алан Уилсон в 1985 г. Он изучил образцы
мтДНК, полученные из крови людей из всех частей света, и на основе выявленных
между ними различий построил филогенетическое древо человечества. Уилсон
показал, что все современные мтДНК могли произойти от мтДНК общей праматери,
жившей в Африке. Работа Уилсона приобрела широкую известность. Обладательницу
предковой мтДНК тут же окрестили «митохондриальной Евой», что породило неверные
толкования – будто все человечество произошло от одной-единственной женщины. На
самом деле у «Евы» было несколько тысяч соплеменниц, просто их мтДНКдо наших
времен не дошли. Однако их вклад бесспорен – от них мы унаследовали
генетический материал хромосом. Появление новой мутации в мтДНК дает начало
новой генетической линии, наследуемой от матери к дочери. Характер наследования
в данном случае можно сравнить с семейным имуществом – деньги и земли человек
может получить от всех предков, а фамилию – только от одного из них.
Генетический аналог фамилии, передаваемой по женской линии, – мтДНК, по мужской
– Y-хромосома, передаваемая от отца к сыну.

К настоящему времени изучены мтДНК десятков тысяч людей. Удалось
выделить мтДНК из костных останков древних людей и неандертальцев. На основе
изучения генетических различий представителей разных народов генетики пришли к
выводу, что на протяжении последнего миллиона лет численность групп
одновременно живущих прямых предков человека колебалась от 40 до 100 тыс.
Однако около 100-130 тыс. лет назад общая численность предков человека
сократилась до 10 тыс. индивидов (генетики называют сокращение численности
популяции с последующим быстрым ростом ее прохождением через «бутылочное
горлышко»), что привело к значительному снижению генетического разнообразия
популяции (рис. 1).

Рис. 1. Результаты оценки численности популяций на основе изучения генетических различий представителей разных народов.

Причины колебания численности пока неизвестны, вероятно, они
были такими же, как и у других видов животных, – изменения климата или кормовых
ресурсов. Описываемый период снижения численности и изменения генетических
характеристик предковой популяции считается временем появления вида Homo
sapiens.

(Часть антропологов относят неандертальцев также к виду Homo
sapiens. В этом случае линию человека обозначат как Homo sapiens sapiens, а
неандертальца – как Homo sapiens neanderthalensis. Однако большинство генетиков
склонны считать, что неандерталец представлял хотя и родственный человеку, но
отдельный вид Homo neanderthalensis. Эти виды разделились 300-500 тыс. лет
назад.)

Изучение мтДНК и аналогичные исследования ДНК Y-хромосомы,
передающейся только по мужской линии, подтвердили африканское происхождение
человека и позволили установить пути и даты его расселения на основе
распространения различных мутаций у народов мира. По современным оценкам, вид
Homo sapiens появился в Африке около 130-180 тыс. лет назад, затем расселился в
Азии, Океании и Европе. Позже всего была заселена Америка (рис. 2).

Рис. 2.Пути (отмечены стрелками) и даты (обозначены цифрами) расселения человека, установленные на основе изучения распространения различных мутаций у народов мира.

Вероятно, исходная предковая популяция Homo sapiens состояла
из небольших групп, ведущих образ жизни охотников-собирателей. Расселяясь по
Земле, люди несли с собой свои традиции и культуру и свои гены. Возможно, они
также обладали и праязыком. Пока лингвистические реконструкции древа
происхождения языков мира ограничены 30 тыс. лет, и существование общего для
всех людей праязыка только предполагается. И хотя гены не определяют ни язык,
ни культуру, во многих случаях генетическое родство народов совпадает и с
близостью их языков и культурных традиций. Но есть и противоположные примеры,
когда народы меняли язык и перенимали традиции своих соседей. Смена традиций и
языка происходила чаще в районах контактов различных волн миграций либо как
результат социально-политических изменений или завоеваний.

Конечно, в истории человечества популяции не только
разделялись, но и смешивались. Поэтому каждый народ представлен не единственной
генетической линией мтДНК или Y-хромосомы, но набором разных, возникших в
разное время в разных регионах Земли.

Адаптация популяций
человека к условиям обитания

Результаты сравнительных исследований мтДНК и Y-хромосом
разных популяций современных людей позволили выдвинуть предположение, что еще
до выхода из Африки, около 90 тыс. лет назад, предковая популяция разделилась
на несколько групп, одна из которых вышла в Азию через Аравийский полуостров.
При разделении различия между группами могли быть чисто случайными. Большая
часть расовых различий возникла, вероятно, позже как адаптация к условиям
обитания. Это относится, например, к цвету кожи – одному из самых известных
расовых признаков.

Адаптация к
климатическим условиям.
Степень пигментации кожи у человека генетически
задана. Пигментация обеспечивает защиту от повреждающего действия солнечного
облучения, но не должна препятствовать получению минимальной дозы
ультрафиолета, необходимого для образования в организме человека витамина Д,
предотвращающего рахит.

В северных широтах, где интенсивность облучения низка, люди
обладают более светлой кожей. Жители экваториальной зоны имеют самую темную
кожу. Исключения составляют обитатели затененных тропических лесов – их кожа
светлее, чем можно было бы ожидать для этих широт, и некоторые северные народы
(чукчи, эскимосы), кожа которых относительно сильно пигментирована, так как они
употребляют в пищу продукты, богатые витамином Д, например, печень морских
животных. Таким образом, различия в интенсивности ультрафиолетового излучения
действуют как фактор отбора, приводя к географическим вариациям в цвете кожи.
Светлая кожа – эволюционно более поздний признак, возникший из-за мутаций в
нескольких генах, регулирующих выработку кожного пигмента меланина. Способность
загорать также детерминирована генетически. Ею отличаются жители регионов с
сильными сезонными колебаниями интенсивности солнечного излучения.

Известны связанные с климатическими условиями различия в
строении тела. Речь идет об адаптациях к холодному или теплому климату:
короткие конечности у арктических популяций (чукчи, эскимосы) увеличивают
отношение массы тела к его поверхности и тем самым уменьшают теплоотдачу, а
жители жарких сухих регионов, например африканские масаи, отличатся длинными
конечностями. Для обитателей районов с влажным климатом характерны широкие и
плоские носы, а в сухом холодном климате эффективнее длинный нос, лучше
согревающий и увлажняющий вдыхаемый воздух.

Приспособлением к жизни в высокогорных условиях является
повышенное содержание гемоглобина в крови и усиление легочного кровотока. Такие
особенности наблюдаются у коренных жителей Памира, Тибета и Анд. Все эти
отличия определяются генетически, но степень их проявления зависит от условий
развития в детстве. Например, у андских индейцев, выросших на уровне моря,
признаки выражены в меньшей степени.

Адаптация к типам
питания.
Некоторые генетические изменения связаны с различиями в типах
питания. Наиболее известна среди них гиполактазия – непереносимость молочного
сахара (лактозы). Для усвоения лактозы у детенышей млекопитающих вырабатывается
фермент лактаза. По окончании периода вскармливания этот фермент исчезает из
кишечного тракта детеныша и у взрослых особей не вырабатывается.

Отсутствие лактазы у взрослых является исходным, предковым
признаком для человека. Во многих азиатских и африканских странах, где взрослые
традиционно не пьют молока, после пятилетнего возраста лактаза перестает
вырабатываться. Употребление молока в таких условиях приводит к расстройству
пищеварения. Однако большинство взрослых европейцев вырабатывают лактазу и
могут пить молоко без вреда для здоровья. Эти люди являются носителями мутации
в участке ДНК, регулирующем синтез лактазы. Мутация распространилась после
появления молочного скотоводства 9-10 тыс. лет назад и встречается
преимущественно у европейских народов. Более 90% шведов и датчан способны
усваивать молоко, и лишь небольшая часть населения Скандинавии отличается
гиполактазией. В России частота гиполактазии составляет около 30% для русских и
более 60-80% для коренных народов Сибири и Дальнего Востока.

Народы, у которых гиполактазия сочетается с молочным
скотоводством, традиционно употребляют в пищу не сырое молоко, а кисломолочные
продукты, в которых молочный сахар уже переработан бактериями в легко
усваиваемые вещества. Преобладание единой для всех диеты западного образца в
некоторых странах приводит к тому, что часть детей с недиагностированной
гиполактазией реагирует на молоко расстройством пищеварения, которое принимают
за кишечные инфекции. Вместо необходимого в таких случаях изменения диеты
предписывают лечение антибиотиками, приводящее к развитию дисбактериоза. Еще
один фактор мог способствовать распространению синтеза лактазы у взрослых – в
присутствии лактазы молочный сахар способствует усвоению кальция, выполняя те
же функции, что и витамин Д. Возможно, именно поэтому у северных европейцев
мутация, о которой идет речь, встречается чаще всего.

Жители Северной Азии отличаются наследственным отсутствием
фермента трегалазы, расщепляющего углеводы грибов, которые традиционно
считаются здесь пищей оленей, не пригодной для человека.

Для населения Восточной Азии характерна другая
наследственная особенность обмена веществ: многие монголоиды даже от небольших
доз спиртного быстро пьянеют и могут получить сильную интоксикацию из-за
накопления в крови ацетальдегида, образующегося при окислении алкоголя
ферментами печени. Окисление происходит в два этапа: на первом этиловый спирт
превращается в токсичный этиловый альдегид, на втором альдегид окисляется с
образованием безвредных продуктов, которые выводятся из организма. Скорость
работы ферментов первого и второго этапов (с неудобочитаемыми названиями
алкогольдегидрогеназа и ацетальдегидрогеназа) задается генетически.

В Восточной Азии распространено сочетание «быстрых»
ферментов первого этапа с «медленными» ферментами второго, то есть при приеме
спиртного этанол быстро перерабатывается в альдегид (первый этап), а его
дальнейшее удаление (второй этап) происходит медленно. Эта особенность
восточных монголоидов обусловлена частым сочетанием у них двух мутаций,
влияющих на скорость работы упомянутых ферментов. Предполагается, что так
проявляется адаптация к еще неизвестному фактору среды.

Адаптации к типу питания связаны с комплексами генетических
изменений, немногие из которых пока детально изучены на уровне ДНК. Например, около
20-30% жителей Эфиопии и Саудовской Аравии способны быстро расщеплять некоторые
пищевые вещества и лекарства, в частности, амитриптилин, благодаря наличию у
них двух или более копий гена, кодирующего один из видов цитохромов –
ферментов, расщепляющих чужеродные вещества, поступающие в организм с пищей. У
народов других регионов удвоение данного гена встречаются с частотой не более
3-5%. Предполагают, что увеличение числа копий гена вызвано особенностями диеты
(возможно, употреблением в пищу больших количеств перца или съедобного растения
тефф, составляющего до 60% продуктов питания в Эфиопии и нигде больше не
распространенного в такой степени). Но что является причиной, а что следствием –
определить в настоящее время невозможно. Привело ли случайное.повышение
частоты в популяции носителей множественных генов к тому, что люди смогли есть
какие-то особые растения? Или то, что они начали употреблять в пищу перец (либо
какой-либо другой продукт, для усвоения которого необходим этот цитохром)
вызвало увеличение частоты удвоения гена? Любой из этих двух процессов мог
иметь место в ходе эволюции популяций.

Очевидно, что пищевые традиции народа и генетические факторы
взаимодействуют. Употребление тех или иных видов пищи становится возможным лишь
при наличии определенных генетических предпосылок, а ставшая впоследствии
традиционной диета действует как фактор отбора и приводит к изменению частот
аллелей и распространению в популяции генетических вариантов, наиболее
адаптивных при данной диете. Традиции обычно меняются медленно. Так, переход от
собирательства к земледелию и сопутствующие этому изменения диеты и образа
жизни продолжались в течение десятков и сотен поколений. Относительно медленно
происходят и сопровождающие такие события изменения генофонда популяций.
Частоты аллелей могут меняться на 2-5% за поколение, и эти изменения
накапливаются из поколения в поколение. Действие же других факторов, например
эпидемий, часто связанных с войнами и социальными кризисами, может в несколько
раз изменить частоты аллелей на протяжении жизни одного поколения за счет
резкого снижения численности популяции. Так, завоевание Америки европейцами
привело к гибели 90% коренного населения в результате войн и эпидемий.

Генетика устойчивости
к инфекционным заболеваниям

Оседлый образ жизни, развитие земледелия и скотоводства,
повышение плотности населения способствовали распространению инфекций и
вспышкам эпидемий. Например, туберкулез – ранее болезнь крупного рогатого
скота, был получен человеком после одомашнивания животных и стал эпидемически
значимым при зарождении и росте городов. Эпидемии сделали актуальной проблему
устойчивости к инфекциям. Устойчивость к инфекциям также имеет генетический
компонент.

Первым изученным примером устойчивости является
распространение в тропической и субтропической зонах наследственной болезни
крови – серповидноклеточной анемии, которая вызывается мутацией в гене
гемоглобина, приводящей к нарушению его функций. У больных форма эритроцитов,
определяемая при микроскопическом анализе крови, не овальная, а серповидная,
из-за чего болезнь и получила свое название. Носители мутации оказались
устойчивыми к малярии. В зонах распространения малярии наиболее «выгодно»
гетерозиготное состояние (когда из пары генов, полученных от
родителей,поврежден только один, а другой нормален), так как гомозиготные
носители мутантного гемоглобина погибают от анемии, гомозиготные по нормальному
гену – болеют малярией, а у гетерозиготных анемия проявляется в мягкой форме и
они защищены от малярии.

В Европе распространено другое наследственное заболевание –
муковисцидоз. Его причина – мутация, нарушающая регуляцию солевого обмена и
водного баланса клеток. У больных поражаются все органы, выделяющие слизистые
секреты (бронхолегочная система, печень, различные железы). Они умирают к
подростковому возрасту, не оставляя потомства. Однако заболевание возникает
только в том случае, если ребенок получает от обоих родителей поврежденный ген,
гетерозиготные носители мутаций вполне жизнеспособны, хотя выделение железистых
секретов и жидкости у них может быть снижено.

В Европе муковисцидоз встречается у одного из 2500
рожденных. В гетерозиготном состоянии мутация присутствует у одного из 50
человек – очень высокая частота для болезнетворной мутации. Поэтому следует
предположить, что естественный отбор действует в пользу ее накопления в
популяциях, то есть гетерозиготы имеют повышенную приспособленность. И
действительно, считается, что они более устойчивы к кишечным инфекциям.
Существует несколько гипотез о механизмах этой устойчивости. Согласно одной из
них, у гетерозигот по мутации снижено выделение жидкости через кишечник, так
что им в меньшей степени грозит смерть от обезвоживания при диарее, возникающей
в результате инфицирования. Но в жарком климате вред от нарушения солевого
обмена перевешивает пользу от повышенной устойчивости к инфекциям – и
муковисцидоз встречается там крайне редко из-за пониженной жизнеспособности
носителей мутаций.

С устойчивостью к туберкулезу связывают распространение в
некоторых популяциях болезни Тея-Сакса, тяжелого наследственного заболевания,
приводящего к дегенерации нервной системы и изменению слизистой дыхательного
тракта. Выявлен ген, мутации в котором приводят к развитию заболевания.
Предполагают, что гетерозиготные носители мутации более устойчивы к туберкулезу.

Эти примеры показывают, что платой популяции за повышение
выживаемости гетерозиготных носителей мутации может оказаться гибель на порядок
реже встречающихся гомозиготных носителей, которые неизбежно появляются при
повышении ее популяционной частоты. Однако известны мутации, которые и в
гомозиготном состоянии защищают от инфекций, например от инфицирования вирусом
иммунодефицита человека, ВИЧ, либо замедляют развитие болезни после
инфицирования. Две такие мутации встречаются во всех популяциях, а еще одна –
европейского происхождения, и в других регионах отсутствует. Предполагается,
что эти мутации распространились в прошлом, поскольку обладают защитным
эффектом и в отношении других эпидемических заболеваний. В частности,
распространение мутации у европейцев связывают с «черной смертью» – эпидемией
чумы, в XIV веке выкосившей треть населения Европы, а в некоторых регионах – до
80%. Другой кандидат на роль фактора отбора – оспа, также уносившая множество
жизней. До появления больших городов и достижения эпидемического порога
численности населения такие крупномасштабные «раунды отбора» на устойчивость к
инфекциям были невозможны.

Развитие цивилизации и
генетические изменения

Кажется удивительным тот факт, что питание бушменов –
охотников-собирателей, живущих в Южной Африке, оказалось соответствующим
рекомендациям ВОЗ по общему балансу белков, жиров, углеводов, витаминов,
микроэлементов и калорий. Биологически человек и его непосредственные предки на
протяжении сотен тысяч лет адаптировались к образу жизни охотников-собирателей.

Изменение традиционного типа питания и образа жизни
отражается на здоровье людей. Например, афроамериканцы чаще, чем евроамериканцы
болеют гипертонией. У североазиатских народов, традиционная диета которых была
богата жирами, переход на европейскую высокоуглеводную пищу приводит к развитию
диабета и других заболеваний.

Преобладавшие ранее представления о том, что с развитием
производящего хозяйства (земледелия и скотоводства) здоровье и питание людей
неуклонно улучшается, сейчас опровергнуто: многие распространенные заболевания
редко встречались у древних охотников-собирателей или вообще были им
неизвестны. При переходе к земледелию уменьшилась продолжительность жизни (от
30-40 лет до 20-30), в 2-3 увеличилась рождаемость и одновременно значительно
возросла детская смертность. Костные останки у раннеземледельческих народов
чаще имеют признаки перенесенной анемии, недоедания, различных инфекций, чем у
доземледельческих.

Лишь в средние века наступил перелом – и продолжительность
жизни стала увеличиваться. Заметное улучшение здоровья населения в развитых
странах связано с появлением современной медицины.

К факторам, отличающим современные земледельческие народы,
относятся высокоуглеводная и высокохолестериновая диета, употребление соли, снижение
физической активности, оседлый образ жизни, высокая плотность населения,
усложнение социальной структуры. Адаптация популяций к каждому из этих факторов
сопровождается генетическими изменениями, то есть возрастанием частоты
адаптивных аллелей в популяции. Частота неадаптивных аллелей снижается,
поскольку их носители менее жизнеспособны или имеют меньшую численность
потомков. Так, низкохолестериновая диета охотников-собирателей делает
адаптивной для них способность к интенсивному поглощению холестерина из пищи,
что при современном образе жизни становится фактором риска атеросклероза и
сердечно-сосудистых заболеваний. Эффективное усвоение соли, полезное в прошлом,
когда соль была недоступна, превращается в фактор риска гипертонии. Изменения
популяционных частот аллелей при рукотворном преобразовании среды обитания
человека происходят так, как и при адаптации к природным условиям. Рекомендации
врачей по поддержанию здоровья (физическая активность, прием витаминов и
микроэлементов, ограничение соли) искусственно воссоздают условия, в которых
человек жил большую часть времени своего существования как биологического вида.

Этические аспекты
изучения генетических различий людей

Итак, на формирование генофондов этнических групп влияют
различные процессы – накопление мутаций в изолированных группах, миграции и
смешение народов, адаптация популяций к условиям среды. Генетические различия
не подразумевают превосходства какой-либо расы, этнической или образованной по
любому иному признаку (типу хозяйства или уровню сложности социальной
организации) группы. Напротив, они подчеркивают эволюционную ценность
разнообразия человечества, позволившую ему заселить все климатические зоны
Земли.

Журнал «Энергия» 2005, № 8

Источник: http://vivovoco.rsl.ru/VV/JOURNAL/VRAN/03_07/ETHNOGENE.HTM

Э.К. Хуснутдинова

ЭТНОГЕНОМИКА И ГЕНЕТИЧЕСКАЯ
ИСТОРИЯ НАРОДОВ ВОСТОЧНОЙ ЕВРОПЫ

Э. К. Хуснутдинова

Хуснутдинова Эльза Камилевна - член-корреспондент Академии наук Республики Башкортостан,
заведующая отделом Института биохимии и генетики Уфимского научного центра РАН.

Эволюция человеческих сообществ (популяций), их происхождение, родство, историческое развитие всегда были в центре внимания многих наук. Для решения этих проблем необходимо исследовать множество признаков в большом числе популяций и этнотерриториальных групп. В качестве таких признаков можно использовать вариабельность структуры биополимеров (белки. нуклеиновые кислоты). Раньше основное внимание уделяли полиморфным белкам. Подлинный переворот в исследованиях произошел при появлении нового типа маркеров, основанных на геномных ДНК.

Геном человека, состоящий примерно из 3 млрд. нуклеотидных пар, расшифрован почти полностью. Однако само по себе близкое завершение этой гигантского по замыслу и грандиозного по реализации международного научного проекта отнюдь не означает, что процесс познания генома завершен. Уже сейчас очевидно, что не существует какого-то "усредненного" генома человека: каждый геном, как и каждый человек, сугубо индивидуален. Эта индивидуальность проявляется на уровне не только отдельной личности, но и этнических групп, отдельных сообществ и рас.

Различия между двумя людьми на уровне ДНК составляют в среднем один нуклеотид на тысячу. Именно этим обусловливаются наследственные индивидуальные особенности каждого человека. Заметим, что различия между ДНК человека и шимпанзе - его ближайшего сородича в животном мире - на порядок больше.

ОСНОВНОЙ ИНСТРУМЕНТ ЭТНОГЕНОМИКИ

Для исследований геномов людей используют разные типы ДНК-маркеров: расположенные на парных хромосомах (аутосомные), на митохондриальной ДНК и на непарной Y-хромосоме. Маркеры на парных хромосомах наследуются по обеим - женской и мужской - линиям, в них представлена подавляющая часть генома человека. Таким образом, у нас в руках оказались маркеры, позволяющие изучать сочетанную изменчивость, одновременно привносимую и с отцовской, и с материнской стороны. Все маркеры ДНК характеризуют сообщества в целом, не выделяя генетического вклада каждого из полов. Используя определенные типы полиморфизма ДНК, можно оценить те или иные временные события, происходившие в истории данной популяции.

Особую роль играют маркеры митохондриальной ДНК (мтДНК) и ДНК Y-хромосомы, поскольку они помогают проследить генетическую историю человечества отдельно по женской и мужской линиям. Митохондриальная ДНК передается потомкам только от матери, так как митохондрии находятся в цитоплазме клетки, а цитоплазма потомка (зиготы) образуется за счет цитоплазмы материнской яйцеклетки. Если два человека имеют общего предка женского пола, то по различиям их мтДНК можно судить о том, сколько поколений отделяет их от жившей столетия или тысячелетия назад общей пра-... прабабушки. Аналогично изучение ДНК Y-хромосомы позволяет проследить эволюционные траектории по отцовской линии, поскольку Y-хромосома передается только от отца к сыну. Оба типа полиморфизма ДНК дополняют друг друга, давая раздельную информацию об отцовском и материнском вкладе в этническую историю и эволюцию популяций.

Передаваясь из поколения в поколение только по одной из родительских линий и не участвуя в рекомбинации (обмен участками гомологичных хромосом в процессе мейоза), оба типа полиморфизма позволяют, по крайней мере теоретически, реконструировать генетические события от наиболее популярных предков современного человека - "Y-хромосомного Адама" и "митохондриальной Евы" - до современных популяций. Полиморфизм маркеров мтДНК и Y-хромосомы определяется факторами микроэволюции (миграция, отбор, мутации). Однако характер их вариабельности по-разному отражает действие и результат этих процессов.

Уровень разнообразия геномов представителей какого-либо биологического вида зависит, во-первых, от разнообразия геномов прародителей вида и, во-вторых, от скорости накопления случайных "ошибок" (мутаций), возникающих при "переписывании" клеткой генетических текстов, и еще от того, как долго существует данный вид. При сравнении генетических текстов Y-хромосомы (или мтДНК) разных людей по присутствию в них одинаковых мутаций можно выявить общего предка. Согласно современным представлениям, скорость накопления мутаций в ДНК относительно постоянна, большинство мутаций нейтральны, так как не затрагивают значимые, смысловые участки генома. Поэтому они не отсеиваются отбором и, раз появившись, передаются из поколения в поколение. Сравнивая два родственных генетических текста, по количеству различий между ними можно установить время появления как мутаций, так и общего предка по мужской или женской линиям.

Изучение полиморфизма ДНК позволяет выявлять значительные внутри- и межпопуляционные различия в частотах полиморфных маркеров ДНК во многих географических районах мира, что стало одной из важнейших характеристик генетической структуры человеческих сообществ. За последнее десятилетие генетиками собраны и проанализированы коллекции мтДНК и Y-xpoмосом представителей народов почти всего мира. По ним восстановлена последовательность и время появления мутаций в ДНК человека.

ДНК-маркеры - эффективный инструмент для исследования гаплотипов - сочетаний аллелей тесно сцепленных полиморфных локусов. Аллель - одна из возможных альтернативных форм гена, а локус - область локализации гена в хромосоме или молекуле ДНК. Такие хромосомные участки (гаплотипы) весьма невелики по размерам, поэтому очень редко рекомбинируют. Они ведут себя как единые блоки, мало меняющиеся во времени и поэтому имеющие довольно древнее происхождение. Таким образом, размер сохранившегося неизменным гаплотипа может служить мерой времени, которое прошло от какого-то момента в прошлом. В общем случае суть анализа гаплотипов состоит в поиске сцепления между собой локусов вследствие эффекта основателя. Анализ частоты и возраста появления в популяции гаплотипа позволяет проследить его историю, а вместе с ней и события, сопутствующие его распространению. Очевидно, что такие данные представляют большой интерес для изучения истории современных народов, характеристики генофондов и оценки основных направлений эволюции всего человечества.

В 80-90-х годах прошлого века шло интенсивное накопление знаний об изменчивости мтДНК человека, были описаны основные расовые и по-пуляционно-специфические типы мтДНК. Глобальный скрининг всех основных расовых групп человечества по полиморфизму митохондриаль-ного генома позволил выявить наиболее древние мутации - ключевые для определения расоспеци-фических кластеров. Установлено, что митохонд-риальные геномы представлены комбинациями расовых групп типов мтДНК, каждая из которых ведет происхождение от единственного основателя.

Сейчас изменчивость митохондриального генома изучается на качественно новом уровне. Анализ однонуклеотидных замен мтДНК, рыяв-ляемых классическим методом анализа полиморфизма ДНК, в сочетании с изучением нуклеотид-ной последовательности гиперизменчивой области мтДНК позволяет проводить комплексную оценку полиморфизма мтДНК в популяциях человека. Такой подход выявил важную для изучения молекулярной эволюции особенность мито-хондриальной ДНК: определенным расовым группам типов мтДНК, ключевые мутации которых расположены в различных участках молекулы, соответствуют вполне определеные типы нуклеотидных последовательностей гипервариа-бельного участка мтДНК. Поскольку существует неравновесие по сцеплению между мутациями в митохондриальном геноме, молекулу ДНК можно рассматривать как один локус, представленный множеством аллелей, определенные группы которых соответствуют определенным группам сцепления между конкретными мутациями. Эти два подхода положены в основу классификации и эволюции линий всего митохондриального генома современного человечества.

ГЕНОМНЫЙ КЛЮЧ К ПРОБЛЕМЕ ПРОИСХОЖДЕНИЯ НАРОДОВ

Первым приложением ДНК-маркеров к проблеме происхождения и расселения человечества стали выполненные Канном с коллегами исследования митохондриальной ДНК представителей различных рас - африканцев, европейцев, азиатов, австралийцев и жителей Новой Гвинеи. По количеству замен нуклеотидов в мтДНК была определена степень родства различных групп людей и построено эволюционное древо человечества (рис. 1). Самая ранняя точка ветвления на древе отделяет от остальных людей группу африканцев, что указывает на африканское происхождение Homo sapiens . Именно в Южной Африке найдены самые древние мутации у бушменов и готтентотов и зарегистрировано самое высокое разнообразие мтДНК.

Рис. 1. Эволюционное древо человечества.
Числа соответствуют количеству исследованных популяций;
проценты - уровню внутрипопуляционного разнообразия,
оно самое высокое (0.6%) в африканских популяциях и самое низкое (0.2%) - в европейских

Митохондриальные ДНК у населения других континентов менее разнообразны, и сравнение их с мтДНК аборигенов Южной Африки показало, что они возникли как мутационные изменения африканских типов после того, как человечество распространилось за пределы этого континента. Второй вывод касался времени коалесценции (расхождения) митохондриальной ДНК. По дате отделения ветви шимпанзе (5-7 млн. лет назад), приняв темп мутационной дивергенции равным 2-4% за 1 млн. лет, Канн с коллегами вычислили время существования последней предковой мтДНК, общей для всех ныне живущих людей, - примерно 185 тыс. лет назад.

Последующие работы подтвердили африканские корни древа мтДНК современного человечества, хотя и остаются еще отдельные спорные моменты. По незавивимым оценкам нескольких групп исследователей, "митохондриальная Ева" жила в период резкого сокращения численности наших предков (до 10 тыс.), вызванного, по-видимому, изменениями климата, - 185 тыс. лет назад. Именно этот период считают временем появления Homo sapiens как биологического вида. Сравнительное исследование митохондриальной ДНК разных популяций современных людей позволило выдвинуть предположение, что еще до выхода из Африки (около 60-70 тыс. лет назад) предковая популяция разделилась по крайней мере на три группы, давшие начало трем расам - африканской, монголоидной и европеоидной .

Вскоре были построены генеалогические древа по данным изучения ДНК Y-хромосомы . Исследование небольшого участка Y-хромосомы свидетельствует о возможно гораздо более позднем происхождении "Y-хромосомного Адама" - 140-175 тыс. лет назад. Результаты всех исследований указывают на его африканское происхождение. Различия между оценками, базирующимися на мтДНК и Y-хромосоме, могут быть объяснены как несходством демографической истории популяций по мужской и женской линиям, различным поведением женщин и мужчин при переселениях, завоеваниях и колонизациях, так и различиями самих геномов, например, в интенсивности отбора вариантов мтДНК и Y-хромосомы.

Гипотезу африканского происхождения современного человека подтверждает и наибольший уровень наследственного разнообразия в Африке по сравнению с другими континентами, а также малые различия между популяциями (на долю межпопуляционного разнообразия приходится 10-15% геномной вариабельности), что отражает недавнее происхождение биологического вида . В целом массив геномных данных наиболее соответствует гипотезе недавнего африканского происхождения современного человека и доказывает справедливость монофилетической гипотезы. В то же время генетические данные не являются исчерпывающим и бесспорным доказательством этой гипотезы.

На основе распределения у разных народов частот различных мутаций в Y-хромосоме и мтДНК составлена карта расселения людей с африканской прародины . Первые волны расселения человека современного типа прошли из Африки через Азию в Австралию и Европу. Удивительно, что время расселения человека по разным континентам соответствует датировке сделанных на этих континентах археологических находок. Например, появление человека в Австралии и Новой Гвинее датируется 50-60 тыс. лет назад, согласно генетическим данным. То же самое время показывает анализ изотопного состава химических элементов в археологических находках. В Центральной и Юго-Восточной Азии люди появились примерно 70 тыс. лет назад. Заселение Европы произошло позже, около 35-40 тыс. лет назад. Наиболее спорны оценки времени заселения Америки. Люди появились там гораздо позже, чем на других континентах, потому что нужно было пересечь Сибирь, добраться до Чукотки и воспользоваться тем моментом, когда уровень моря в период оледенения позволял перейти нынешний Берингов пролив. Случилось это в промежуток времени от 15 до 35 тыс. лет назад. Позже, под натиском ледника, палеолитические европейцы несколько раз отступали на юг и юго-восток, возможно, даже возвращались обратно в Африку, о чем свидетельствуют результаты исследования гаплотипов Y-хромосомы в популяциях Африки . Сравнивая спектр мутаций в ДНК современных европейцев и их азиатских соседей, удалось установить, что 10-20% генов было привнесено в Европу неолитическими переселенцами с Ближнего Востока около 10 тыс. лет назад. Вместе с ними в Европе появилось земледелие.

Разные расы и народы возникли после разделения предковых популяций. Эволюция вновь образовавшихся популяционных групп шла независимо. В каждой из них накапливались свои мутации, увеличивалась генетическая дистанция между группами. Сообщества приспосабливались к климатическим и географическим условиям, типу питания. В изолированных группах независимо протекала эволюция языка и культуры.

На формирование современных народов влияли не только процессы разделения популяций, поскольку народы могут образовываться при смешении нескольких исходных сообществ с разной расовой и языковой принадлежностью. Тогда возникает генетически разнородная этническая общность, но с единым типом культуры и общим языком. В связи с этим все большую актуальность приобретает изучение генетической истории популяций отдельных регионов, расово-этнических групп, генетической родословной современных этносов.

ЭТНОГЕНОМИКА НАРОДОВ ВОЛГО-УРАЛЬСКОГО РЕГИОНА

В Волго-Уральском регионе столкнулись две волны расселения: европеоидная и монголоидная. Находясь на границе двух частей света - Европы и Азии, этот регион на протяжении исторически длительного времени был местом взаимодействия многих этнических слоев. В формировании народов края известна роль угров Западной Сибири, финнов севера Восточной Европы, индо-иранцев Ближнего Востока, тюрков Южной Сибири и Алтая, а позднее кочевых татаро-монголь-ских племен и славянских народов Центральной и Западной Европы. Вплоть до XVI в. Среднее Поволжье было подлинным "котлом", в котором перемешались многие этнические группы. Следы взаимопроникновения хранят гены проживающих здесь народов.

Современные популяции Волго-Урала крайне неоднородны по этнолингвистической структуре. Сейчас здесь проживают представители финно-угорской ветви Уральской языковой семьи (удмурты, марийцы, мордва, коми), тюркской ветви Алтайской языковой семьи (башкиры, татары, чуваши) и восточно-славянской ветви Индоевропейской языковой семьи (русские). С целью познания факторов формирования генофонда, генетической реконструкции родства и происхождения современных народов Волго-Урала изучены 17 полиморфных аутосомных ДНК-локусов, определена нуклеотидная последовательность ДНК гипервариабельного участка митохондриального генома, выполнен анализ полиморфизма 24 локусов Y-хромосомы. В ходе исследований проанализированы геномы 1500 индивидов из 8 популяций (башкиры, татары, русские, чуваши, удмурты, коми, мордва, марийцы).

Полиморфизм аутосомных ДНК-локусов. Анализ полиморфизма 17 аутосомных ДНК-локусов в популяциях Волго-Уральского региона свидетельствует об их неоднородности и высокой информативности для популяционно-генетических исследований. Оценка степени генного разнообразия (Gst) народов этого региона показала, что их генофонд не только географически занимает промежуточное место между европейскими и сибирскими генофондами. Уровень генетических различий между этносами Волго-Урала (Gst = 1.91%) занимает как бы промежуточное положение между европейскими (Gst = 1.18%) и сибирскими народами (Gst = 5.84%), тяготея к европейскому типу (рис. 2). Изучение соотношения европеоидного и монголоидного вкладов в генофонд народов Волго-Уральского региона по данным полиморфизма ДНК-локусов выявило большую долю европеоидности. Самая высокая доля европеоидности обнаружена в популяциях мордвы (89.4%) и коми (81.0%), самая низкая - в популяциях башкир (62%) и марийцев (53%) . Это согласуется с данными антропологии и археологии.

Рис. 2 . Уровень генетических различий между этносами Сибири, Волго-Уральского региона и Европы

Полиморфизм мтДНК. Чтобы судить о генетическом разнообразии народов Волго-Уральского региона по материнской линии, была определена последовательность гипервариабельного участка митохондриальной ДНК (377 нуклеотидов) и проведен анализ полиморфизма мтДНК с использованием 26 эндонуклеаз (ферментов рестрикции). Полученные данные анализировались методом так называемых медианных сетей. Медианная сеть - один из графических вариантов представления данных о полиморфизме ДНК, который позволяет проследить дивергенцию митохондриального генома от предковой ДНК. В качестве предкового выбирается гаплотип, который широко распространен в данной популяции и включает наиболее частые аллели, характерные для данного этноса. В процессе такого анализа в единую медианную сеть соединяются посредством линий сотни и тысячи соседствующих, наиболее близких индивидуумов. В этой сети узловые соединения совпадают со специфическими гаплотипами, определенными по характерным мутациям изучаемого генома.

При сравнительном изучении мтДНК у народов Волго-Уральского региона выявленные гап-лотипы были отнесены к определенным линиям в соответствии с классификацией Макуолли . Для большинства расовых и географических групп установлена специфичность типов мтДНК (рис. 3). Более 90% всех типов мтДНК народов Западной Евразии принадлежит к линиям Н, J, V, 1, К, Т, U, W и X, которые рассматриваются как потомки европейского генного пула, существовавшего в верхнем палеолите. Митохондриальный геном азиатских популяций включает два суперкластера М и N, которые соединяются в африканском макрокластере L3. Последний рассматривается в качестве общего предка для всех неафриканских популяций мира. Около 50% линий мтДНК коренных жителей Азии принадлежит к суперкластеру М, который подразделяется на линии С, Z, D, G, Е и др. . Суперкластер N в Азии делится на несколько линий: А, Y, В, F.

Рис. 3. Медианная сеть, демонстрирующая полиморфизм мтДНК в популяциях Европы, Азии и Африки

Линии D, С, Z, G суперкластера М, линии A, Y суперкластера N и линии В, F суперкластера R характерны для азиатских популяций; линии 1, X, W суперкластера N и линии V, Н. Т, J, U, К суперкластера R - для европейских; линии LI, L2, L3, М1 и U6 принадлежат африканским народам

Большинство типов мтДНК народов Волго-Уральского региона соответствует линиям мтДНК Европы и Ближнего Востока, что свидетельствует об общих предковых линиях мтДНК, специфичных для европейцев . В целом среди изученных нами популяций частота европейских типов мтДНК оказалась наиболее высокой у мордвы, коми-зырян и русских. С другой стороны, уровень распространения линий мтДНК, специфичных для Восточной Евразии, также достигает больших значений, что ранее не было показано для Западной Европы. Высокая частота линий G, D, С, Z и F в некоторых этнических группах, как тюркских (башкиры), так и финноугорских (удмурты, коми-пермяки), указывает на значительное участие сибирского и центральноазиатского компонента в этногенезе народов Волго-Уральского региона.

Самостоятельный интерес вызывает высокая частота азиатской линии F (6%) у башкир. Эта линия характерна для народов Средней Азии - казахов, уйгуров и монголов, и мы можем предположить, что, во-первых, существенную роль в формировании данной этнической группы сыграл среднеазиатский компонент и, во-вторых , популяция башкир длительное время находится в изоляции от своих ближайших соседей. У других тюркоязычных и финноугорских популяций Волго-Уральского региона частота азиатских линий низкая. Поскольку очевидных географических барьеров как между тюркскими этносами, так и между финноугорскими популяциями не существует, можно сделать вывод о различной демографической истории башкир по материнской линии внутри упомянутых языковых семей. Выборки башкир и удмуртов по совокупности всех полученных по материнской линии данных можно охарактеризовать как этносы, имеющие в прошлом период резкого роста численности в условиях относительной изоляции. Анализ митохондриального генома татар, чувашей, марийцев, мордвы, коми и русских, скорее всего, отражает процессы продолжающейся интенсивной метисации в условиях сохранения постоянного популяционного размера. В целом, медианные сети показывают смешение и взаимопроникновение гаплотипов мтДНК, что свидетельствует как о тесных этногенетических контактах изученных этносов, так и о единой генетической основе населения Волго-Уральского региона по материнской линии.

В распространении типов мтДНК у народов Волго-Уральского региона ведущую роль играют факторы этнокультурной и территориальной близости или отдаленности, но не лингвистические барьеры. Это означает, что по материнской линии финноугорские народы имеют большее сходство с их непосредственными тюркскими соседями, чем с родственными в языковом отношении балтофинскими народами.

Анализ европеоидного и монголоидного вклада в материнские генетические линии народов Волго-Уральского региона не выявил корреляции языка и геномного состава этнических групп. На языках тюркской группы, привнесенных из Азии, говорят не только башкиры (65% монголоидности), но и татары и чуваши, у которых преобладает европеоидный генетический компонент. В остальных популяциях региона вклад монголоидного компонента составляет от 12% у русских до 20% у удмуртов. Русские, проживающие на территории этого региона, имеют 10-12% монголоидных типов мтДНК, а русские из Рязанской и Курской областей - только 2-3%. Это можно объяснить смешением русских с тюркоязычными народами на территории Волго-Уральского региона.

Интересно, что некоторые материнские линии у разных народов, например, у русских, татар и марийцев, оказались общими. Это показывает глубокое родство народов, говорящих на разных языках, придерживающихся разных религий и традиций.

Сравнительный анализ типов мтДНК в 18 популяциях Евразии, включая популяции Волго-Уральского региона (гагаузов, турков, татар, башкир, чувашей, карачаевцев, кумыков, азербайджанцев, узбеков, казахов, киргизов, ногайцев, уйгуров, шорцев, тувинцев, долган, якутов), которые относятся к тюркской ветви Алтайской языковой семьи, позволил установить западно-восточный градиент увеличения частоты азиатских линий мтДНК на расстоянии 8000 км: от 1% у гагаузов из Молдавии до 95% у якутов и 99% у долган (рис. 4). Кроме того, установлено, что лингвистическое сходство популяций играет меньшую роль, чем географическая близость или отдаленность популяций.

Рис. 4. Результаты сравнительного анализа типов мтДНК в 18 популяциях Евразии
Отчетливо виден западно-восточный градиент увеличения частоты азиатских линий мтДНК

Один из наиболее важных аспектов анализа митохондриального генома - оценка времени коалесценции (расхождения, дивергенции) линий мтДНК в пределах каждой линии. Безусловно, на временные оценки будут влиять различные факторы формирования разнообразия мтДНК: объем выборки, миграция населения, резкий рост численности, феномен "бутылочного горлышка" - сильное сокращение численности наших предков, вызванное, по-видимому, изменением климата, и т.д. Тем не менее оценка времени дивергенции линии возможна при обнаружении предковых гаплотипов.

По ориентировочным оценкам, возраст дивергенции линий, выявленных у народов Волго-Уральского региона, варьировал от 273 ± 57 тыс. лет для азиатской линии Z до 22.76 ± 5.250 тыс. лет для линии С. Возраст дивергенции самой крупной европейской линии Н определен в 20.036 ± 4.250 тыс. лет, что соответствует археологическому времени повторной экспансии населения на территории Урала в постледниковый период. Используя данные о числе мутационных замен и скорости накопления мутации для гипервариабельного участка мтДНК, равной одной мутационной замене за 20.18 тыс. лет, мы получили среднее значение времени дивергенеции мтДНК для народов Волго-Уральского региона. Оно составляет 49.60 тыс. лет назад, что соответствует периоду расселения человека на европейском континенте в эпоху верхнего палеолита.

Полиморфизм ДНК Y-хромосомы. Анализ Y-хромосомы вошел в арсенал методов эволюционной генетики лишь в самое последнее время, когда был найден ряд высокоинформативных полиморфных локусов в ее нерекомбинантной части. Генетические свойства Y-хромосомы, такие как передача только по отцовской линии, отсутствие рекомбинации, малая эффективная численность пула Y-хромосом по сравнению с аутосомами (в четыре раза меньше, чем у аутосом), позволяют прослеживать по гаплотипам Y-хромосомы отцовские линии, представляющие собой последовательную "запись" мутаций в ряду поколений. По сравнению с митохондриальным геномом, насчитывающим 16.5 тыс. пар нуклеотидов. Y-хромосома, размер которой оценивается приблизительно в 60 млн. пар нуклеотидов, дает в руки исследователей потенциально более мощное "оружие".

Если предшествующие работы, посвященные анализу Y-хромосомы в популяциях России, основывались преимущественно на анализе 9 маркеров, то для изучения и сравнения генетического разнообразия отцовских линий в популяциях Волго-Уральского региона использовались 24 маркера Y-хромосомы. В качестве примера на рисунке 5 представлена медианная сеть линий 12 и 16 Y-хромосомы как наиболее интересных в контексте финноугорских народов. Линия 16 практически отсутствует в западноевропейских популяциях, но частота ее высокая среди народов Балтии - эстонцев и финнов, а также у народов Волго-Уральского региона, особенно удмуртов и коми-зырян .

Рис. 5. Медианная сеть линий HG12 и HG16 Y-хромосомы, построенная для некоторых популяций Европы и Азии

Для линии 16 Y-хромосомы уровень генетического разнообразия намного выше в популяциях Восточной Европы (чуваши, татары), чем в изученных популяциях Сибири. Хотя удмурты и имеют очень высокую частоту линий 12 и 16, уровень генетического разнообразия у них невысокий по сравнению с другими популяциями Европы. Данные о низком уровне генетического разнообразия удмуртов получены и по материнской линии при анализе полиморфизма митохондриальной ДНК. Все это свидетельствует о несомненной роли эффекта основателя и дрейфа генов в демографической истории удмуртов.

Анализ распространения и разнообразия линии 16 Y-хромосомы среди восточноевропейских популяций показывает, что местом ее "рождения", возможно, является Восточно-Европейская равнина. Согласно филогеографическому анализу этой линии в Евразии, она начала распространяться с запада на восток. В то же время частота распространения линии 12 - предковой для линии 16 - меньше, чем для линии 16.

Особенно характерна для популяций Волго-Уральского региона линия 3 Y-хромосомы, частота встречаемости которой максимальна у славян (русские и поляки), а также у населения Латвии, Литвы и Эстонии [ . Таким образом, носители этой линии - этнические группы, принадлежащие к разным языковым семьям. Частота встречаемости таких групп уменьшается в направлении север (Финляндия, Швеция) - юг (Турция, Кавказ). Анализ распространения данной линии в популяциях Волго-Уральского региона подтверждает гипотезу о возможном движении населения после Ледникового периода (Last Glacial Maximum) с территории нынешней Украины, где в то время располагался один из центров потепления .

Судя по результатам анализа отцовских линий в популяциях Восточной Европы и, в частности, Волго-Уральского региона, главную роль в формировании генетического разнообразия народов, проживающих на этой территории, по-видимому, играет географическая близость, а не языковая принадлежность. И хотя многие особенности генетической близости популяций объясняются с точки зрения их географического положения, в некоторых случаях "индивидуальная" демографическая история популяции имеет существенное значение. Хороший пример - популяция удмуртов, у которых разнообразие линий Y-хромосомы и мтДНК ограничено. Принимая темпы мутирования изученных ДНК-маркеров Y-хромосомы за 2.1 х 10 -3 и длительность одного поколения за 25 лет, получаем, что наблюдаемая дисперсия гаплотипов, выявленных у современного населения Волго-Уральского региона, сформировалась приблизительно 42.5 тыс. лет назад, что соответствует времени заселения Европы человеком в эпоху верхнего палеолита.

Таким образом, исследования полиморфизма аутосомных, митохондриальных и Y-хромосомных ДНК-маркеров внесли важный вклад в понимание путей происхождения человека и рас, расселения Homo sapiens по планете, в генетическую и демографическую историю отдельных этносов и популяций. Можно надеяться, что по мере все более подробного изучения свойств конкретных маркеров ДНК будут появляться дополнительные возможности для изучения генетической истории народов Европы и Азии. Дальнейшее развитие этногеномики в сочетании с палео- и археогеномикой значительно расширит наши представления о генофонде человека, внесет весомый вклад в понимание вопросов исторического развития и эволюции человечества.

ЛИТЕРАТУРА

1. Rosser Z.H., Zerjal Т., Hurles M.E. et al. Y-chromosomal diversity in Europe is clinal and influenced primarily by geography, rather than by language // Am. J. Hum. Genet. 2000. V. 67. P. 1526-1543.

2. Thomson R., Pritchard J., Shen P., Oefner P., Feldman W. Recent common ancestry of human Y chromosomes: Evidence from DNA sequence data // Proceedings of National Academy of Sciences. 2000. V. 97. №13 P. 7360-7365.

3. Stoneking M. Progress in population genetics and human evolution//Berlin: Springer, 1997. P. 164.

4. Cavalh-Sforza L.L. Genes, Peoples, and Languages. N.Y.: North Point Press, 2000.

5. Cruciani F., Santolamazza P.. Shen P. et al. A back migration from Asia to Sub-Saharan Africa is Supported by high- resolution analysis of Human Y-chromosome hap-lotypes //Am. J. Hum. Gen. 2002. V. 70. P. 1197-1214.

6. Лимборская C.A., Хуснутдинова Э.К.. Балановская Е.В. Этногеномика и геногеография народов Восточной Европы. M.: Наука, 2002.

7. Macualy V.A., Richards M.B., Forster P. et al. The Emerging Tree of West Eurasian mtDNAs: A Synthesis of Control Region Sequences and RFLPS //Am. J. Hum. Genet. 1999. V. 64. P. 232-249.

8. Wallace D.C., Brown M.D., Lott M.T. Mitochondrial DNA variation in human evolution and disease // Gene. 1999. V. 238. P. 211-230.

9. Бермишева M., Тамбетс К., Виллемс P., Хуснутдинова Э. Разнообразие гаплогрупп митохондриальной ДНК у народов Волго-Уральского региона // Молекулярная биология. 2002. № 6. С. 990-1001.

10. Villems R., Rootsi S., Khusnutdinova E. el al. Archaeo-genetics of Finno-Ugric speaking populations // The Roots of Peoples and Languages of Northern Eurasia. IV. Ed. by K. Julku. Oulu. 2002. P. 271-284.

Николай Янковский

В основе развития человека, так же как и любого другого живого существа, лежит наследственная информация, записанная в молекуле ДНК. ДНК можно представить, как созданный природой текст, в котором буквами служат молекулы-нуклеотиды. В генетическом алфавите всего четыре разных буквы, которые названы по входящим в их состав химическим соединениям: А (аденин), Г (гуанин), Ц (цитозин) и Т (тимин). Последовательность этих букв определяет множество биологических признаков человека - цвет глаз и кожи, группу крови, предрасположенность или устойчивость к болезням, некоторые особенности интеллекта и поведения.

Совокупность всей наследственной информации организма называется геномом. Сформировалась новая междисциплинарная область науки - геномика, направленная на понимание того, как структура и функции генома связаны с нормальным развитием или отклонениями от него. Геномика уже многое дала медицине - ведь здоровье человека связано с особенностями его генетического текста. Есть и другой аспект этих исследований - они позволяют на новом уровне описать генетические особенности народов и восстановить историю их формирования и формирования человека как биологического вида в целом. Эти области науки называются этногеномикой и палеогеномикой.

Изучение генома человека потребовало совместных усилий тысяч ученых десятков стран и проводилось в рамках самого крупного за всю историю науки международного биологического проекта - программы «Геном человека».

В настоящее время практически полностью определена последовательность генома человека, составляющая 3 млрд букв-нуклеотидов. Такую общую протяженность имеет комплект молекул ДНК, который человек получает в наследство от каждого из своих родителей. В нем содержится около 25 000 генов - участков генетического текста, влияющих на ту или иную функцию организма. Размер генома и набор генов у всех людей практически одинаков. Однако многие гены могут находиться в альтернативных состояниях - они называются аллелями. Ясно, что из всего многообразия аллелей данного гена человек получает от своих родителей всего два - один от матери, другой от отца.

ДНК хранится в клетке в виде 23 пар хромосом, содержащих каждая отдельный фрагмент генетического текста. Одна из пар хромосом определяет пол ее обладателя. У женщин хромосомы этой пары одинаковы и называются Х-хромосомами. У мужчин хромосомы разные - одна, как и у женщин, Х-хромосома, вторая - более короткая Y-хромосома. В генетическом смысле быть мужчиной означает иметь Y-хромосому.

Различия на уровне ДНК между двумя людьми составляют в среднем один нуклеотид на тысячу. Именно эти отличия обусловливают наследственные индивидуальные особенности каждого человека. Различия между ДНК человека и шимпанзе - его ближайшего сородича в животном мире - на порядок больше: один нуклеотид на сто.

Уровень разнообразия геномов представителей одного биологического вида зависит от разнообразия геномов группы прародителей этого вида, от скорости накопления мутаций - «ошибок», возникающих при переписывании клеткой генетических текстов и от того, как долго существует вид.

Для того чтобы показать, каким образом изучение различий между геномами представителей разных рас и народов позволяет восстановить историю происхождения человека и расселения его по Земле, используем сравнение ДНК с текстом. Некоторые закономерности воспроизводства генетических и рукотворных текстов оказались весьма сходными.

^

Восстановление истории текстов

Один из старейших древнерусских летописных сводов - Повесть временных лет, датируемая предположительно 1112 г. - дошел до нашего времени в нескольких десятках вариантов. Среди них Ипатьевский список (начало XIV в.), Лаврентьевский (1377 г.) и другие. Выдающийся литературовед и лингвист А. А. Шахматов сопоставил все доступные ему списки летописей и выявил в них разночтения и общие места. На основе этого он выделил списки, имеющие совпадающие разночтения. Предполагалось, что разночтения, совпадающие в нескольких списках, имеют общее происхождение, то есть восходят к общему источнику. Путем сравнения летописей и выделения сходных текстов удалось восстановить протографы - не дошедшие до наших дней общие источники изученных текстов, такие как Начальный свод (1096–1099 гг.) и Владимирские своды XII-XIII вв. Изучение Начального свода и сравнение его с другими гипотетическими протографами показало, что он имел в своей основе какой-то более древний текст летописного характера. Этот протограф гипотетического протографа был назван Шахматовым Древнейшим сводом и датирован 1036–1039 гг. Выводы Шахматова получили подтверждение, когда был найден Московский свод 1408 г., существование которого было предсказано ученым (Приселков, 1996). См. рис. 1.

1096-99 гг.


1305 г.

Древнейший свод

Начальный свод

Троицкая летопись 1408

^

Повесть временных лет

Ипатьевский список нач. XIV века

Лаврентьевская летопись 1377

Существующие летописи

Реконструированные

Протографы

Рис. 1. Упрощенная схема восстановления не сохранившегося исходного летописного текста по разнообразию его более поздних копий (по Приселкову)

Такие же принципы положены в основу сравнения генетических текстов. Предполагается, что в большинстве случаев одинаковые мутации (изменения генетического текста), имеющиеся в геномах разных людей, восходят к мутации в геноме их общего предка. В отличие от рукописей, которые могут быть составлены на основе нескольких источников, в генетических текстах всегда только два источника - мать и отец. Но и этого достаточно, чтобы анализ «составного» текста стал достаточно сложным. Однако в геноме человека есть две особых части, наследование которых происходит иным образом.

Кроме 23 пар хромосом, у человека имеется небольшая молекула ДНК, расположенная внутри энергообеспечивающего аппарата клетки - в митохондриях. Митохондриальную ДНК (мтДНК) каждый человек получает только от матери, так как при оплодотворении яйцеклетки спермии свои митохондрии потомству не передают. Мутации, появившиеся в митохондриальной ДНК женщины, передадутся всем ее детям. Но следующему поколению их передадут только дочери. Мутация в мтДНК будет присутствовать в популяции до тех пор, пока существуют прямые потомки по женской линии той праматери, у которой эта мутация возникла.

Аналогичным образом по мужской линии передается Y-хромосома, та самая хромосома, наличие которой отличает мужчин от женщин. Y-хромосома передается только от отца к сыну. Все сыновья одного отца имеют одинаковые Y-хромосомы. Вновь появившись, мутация маркирует Y-хромосомы всех прямых потомков по мужской линии. При появлении мутаций предковая линия разделяется на две.

При сравнении генетических текстов Y-хромосом (или мтДНК) разных людей можно выявить общего предка аналогично выявлению протографа летописей. Но, в отличие от летописей, где изменения текста зависят от внимательности и целей переписчика, скорость накопления мутаций в ДНК относительно постоянна. Лишь небольшая часть этих мутаций вредна. Большинство мутаций, по современным представлениям, нейтральны (то есть не оказывают какого-либо полезного или вредного влияния на их обладателя), так как не затрагивают значимые, смысловые участки генома. Они не отсеиваются отбором и, раз появившись, передаются из поколения в поколение.

Это позволяет датировать время появления предковой мутации при сравнении двух родственных генетических текстов по количеству различий между ними и, соответственно, установить время существования общего предка по мужской или женской линии. За последнее десятилетие генетиками собраны и проанализированы коллекции мтДНК и Y-хромосом представителей народов всего мира (Уилсон А. К., Канн Р. Л., 1992). По ним восстановлена последовательность и время появления мутаций. Эволюционная история мтДНК и Y-хромосомы отличается, так как связана с разными брачными традициями, разным поведением мужчин и женщин при переселениях, завоеваниях или колонизации. Представленные в графическом виде, эти данные образуют филогенетическое древо человечества. По данным геномных исследований, ныне живущие люди имеют общую праматерь, к которой восходят линии всех мтДНК. Эта женщина, названная «митохондриальной Евой», жила около 180 тыс. лет назад в Африке - именно к африканских популяциям ведут корни филогенетического древа мтДНК. У представителей африканских народов найдены и самые древние мутации в Y-хромосмое. То есть «Адам» жил там же, где и «Ева», хотя датировки времени существования общего предка по Y-хромосмое несколько ниже, чем для мтДНК. Однако точность этих методов по статистическим причинам не очень высока - ошибка в молекулярных датировках может составлять 20–30%. Место проживания предков человека - Юго-Восточная Африка - указывают по территориям, занимаемым сейчас бушменами и готтентотами, хадза и сандаве - народами, у которых найдены самые древние мутации.

^

Африканские корни и расселение человека

по континентам

Гипотеза африканского происхождения человека получила подтверждения в ряде независимых исследований. Особый интерес вызвали работы по изучению населения Южной и Восточной Африки - бушменов и готтентотов. Их языки содержат щелкающие звуки, нигде больше не встречающиеся, и относятся к так называемой койсанской группе (комбинация слов «кой-койн» - самоназвание готтентотов и «сан» - название бушменов), обособленно стоящей в системе языков мира. Они значительно отличаются от остальных африканских народов, в том числе и от своих соседей банту, не только лингвистически, но и антропологически. Отличия проявляются и в их ДНК: у представителей койсанской группы встречаются мутации, унаследованные людьми и шимпанзе от общих предков, и утраченные в других поупялциях человека. Возможно, сохранение этой мутации только у представителей койсанских групп указывает на то, что их предки в определенной момент истории человечества были более многочисленными, чем предки всех остальных ныне живущих людей, и заселяли значительную часть африканского континента, а впоследствии они были втеснены бантуговорящими племенами.

Интересно, что различия между популяциями в разных регионах мира по Y-хромосоме оказались в несколько раз выше, чем по мтДНК. Это свидетельствует о том, перемешивание генетического материала по женской линии происходит более интенсивно, то есть что уровень миграции женщин превышает (почти на порядок) уровень миграции мужчин. И хотя эти данные на первый взгляд могут показаться удивительными - путешествия всегда считались прерогативой мужчин, - они могут объясняться тем, что для большинства человеческих обществ характерна патрилокальность. Обычно жена переходит жить в дом мужа. Предполагается, что брачные миграции женщин оставили более заметный след на генетической карте человечества, чем дальние походы завоевателей.

Различия между генетическими текстами разных людей позволяют не только оценить время существования наших прародителей, но и численность предковых популяций. «Ева» и «Адам» были не одиноки, но мтДНК и Y-хромосомы их современников не дошли до нас. Ведь линия мтДНК обрывается, если у женщины родились только сыновья или вообще нет детей. Аналогично обрывается линия Y-хромосомы мужчины, не имеющего сыновей. Различные группы генетиков, исходя из оценок генетического разнообразия современных популяций человека по другим генам, пришли к выводу, что на протяжении последнего миллиона лет численность прямых предков человека колебалась от 40 до 100 тыс. одновременно живущих индивидов. Резкое падение численности произошло около 200 тыс. лет назад - она сократилась до 10 000 индивидов, то есть на 75–90%, что привело к утрате значительной части генетического разнообразия. Именно этот период прохождения через «бутылочное горлышко» считается временем появления Homo sapiens как биологического вида.

На основе генетических данных постепенно проясняется картина заселения Азии, Европы и Америки. В недавно опубликованных работах определены частоты древних типов мтДНК и Y-хромосом, принесенных в Европу первыми поселенцами 40–50 тыс. лет назад, и других, распространившихся позже, в том числе и тех, которые отражают экспансию земледельческих племен из плодородного полумесяца на Ближнем Востоке 9 тыс. лет назад. И здесь генетические данные пролили свет на еще один вопрос, также вызывавший на протяжении многих лет горячие дискуссии.

Как распространяется культура? Происходит ли передача традиций, технологий и идей при контакте людей разных культур (концепция культурной диффузии), или традиции и культурные навыки путешествуют по миру только вместе со своими носителями, и смена культуры происходит одновременно со сменой населения (концепция демической диффузии)?

До недавнего времени преобладала концепция демической диффузии. Считалось, что земледельцы, пришедшие в Европу из Малой Азии около 10 тыс. лет назад, дали основной вклад в генофонд современных европейцев, вытеснив проживавшие в Европе палеолитические популяции. Однако опубликованные в последнее время работы показали, что генетический вклад «мигрантов»-земледельцев составляет в современном населении Европы не более 10–20%. То есть появление относительно небольшого числа земледельцев привело к тому, что палеолитическое население Европы восприняло привнесенные технические инновации, и в результате на всей европейской территории сменился тип хозяйства и культуры.

На основе распределения у разных народов частот различных мутаций в Y-хромосоме и мтДНК составлена карта расселения людей с Африканской прародины. Первая волны расселения человека современного типа прошли из Африки через Азию в Австралию и в Европу. Позже, под натиском ледника, палеолитические европейцы несколько раз отступали на юг и юго-восток, заходя, возможно, даже обратно в Африку. Последней была заселена Америка. Исследование мтДНК живших в Европе неандертальцев (удалось получить несколько образцов из найденных костных останков) показало, что они также, видимо, не внесли вклад в гены современных людей. Материнские линии человека и неандертальца разошлись около 500 тыс. лет назад, и хотя в период от 50 до 30 тыс. лет назад они обитали вместе в Европе, генетических следов их смешения (если таковое происходило) не осталось (рис. 2).


Рис. 2. Филогенетическое древо человечества по мтДНК
^

Адаптация к различным условиям обитания

Генетическое разнообразие определяет особенности приспособления человеческих популяций к условиям окружающей среды. При изменении условий обитания (температуры, влажности, интенсивности солнечного облучения) человек приспосабливается за счет физиологических реакций (сужения или расширения кровеносных сосудов, потоотделения, загара и т. п.). Однако в популяциях, проживающих долгое время в определенных климатических условиях, адаптации к ним накапливаются на генетическом уровне. Они меняют внешние признаки, сдвигают границы физиологических реакций (например, скорость сужения сосудов конечностей при охлаждении), «подстраивают» биохимические параметры (такие, как уровень холестерина в крови) к оптимальным для данных условий.

Климат

Один из наиболее известных расовых признаков - цвет кожи, пигментация которой у человека задана генетически. Она защищает от повреждающего действия солнечного облучения, но не должна препятствовать получению минимальной дозы облучения, необходимой для образования витамина Д, предотвращающего рахит. В северных широтах, где низкая интенсивность облучения, у людей кожа более светлая, а в экваториальной зоне самая темная. Однако у обитателей затененных тропических лесов кожа светлее, чем можно было бы ожидать, а у некоторых северных народов (чукчей, эскимосов), напротив, она пигментирована сильнее, чем у других народов, проживающих на той же широте. Предполагают, что это может быть связано с тем, что их пища содержит много продуктов, богатых витамином Д (печень рыбы и морских животных), либо с тем, что их предки переселились сюда относительно недавно в эволюционных масштабах.

Таким образом, интенсивность ультрафиолетового излучения действует как фактор отбора, приводя к географическим вариациям в цвете кожи. Светлая кожа эволюционно более поздний признак и возникла за счет мутаций в нескольких генах, регулирующих выработку кожного пигмента меланина (ген рецептора меланина MC1R и другие). Способность загорать также детерминирована генетически. Ею отличаются жители регионов с сильными сезонными колебаниями интенсивности солнечного излучения.

Известны связанные с климатическими условиями различия в строении тела. Это адаптации к холодному или теплому климату. Так, короткие конечности у арктических популяций (чукчей, эскимосов) уменьшают отношение массы тела к его поверхности и тем самым сокращают теплоотдачу. Обитатели жарких сухих регионов, например, африканские масаи, напротив, отличаются длинными конечностями. У жителей влажного климата более широкие и плоские носы, а в сухом холодном климате нос более длинный, поскольку способствует согреванию и увлажнению вдыхаемого воздуха.

Повышенное содержание гемоглобина в крови и усиление легочного кровотока служат приспособлением к высокогорным условиям. Такие особенности свойственны коренным жителям Памира, Тибета и Анд. Все эти признаки определяются генетически, но степень их проявления зависит от условий развития в детстве: например, у андских индейцев, выросших на уровне моря, они менее выражены.

^ Типы питания

Некоторые генетические изменения связаны с разными типами питания. Среди них наиболее известна непереносимость молочного сахара лактозы - гиполактазия. У детенышей млекопитающих для усвоения лактозы вырабатывается фермент лактаза. По окончании вскармливания она исчезает из кишечного тракта детеныша. Отсутствие фермента у взрослых - исходный, предковый признак для человека.

Во многих азиатских и африканских странах, где взрослые традиционно не пьют молоко, после пятилетнего возраста лактаза не синтезируется, и потому употребление молока приводит к расстройству пищеварения. Однако большинство взрослых европейцев могут без вреда для здоровья пить молоко, так как из-за мутации в участке ДНК, регулирующем работу гена лактазы, синтез фермента у них продолжается. Эта мутация распространилась после появления молочного скотоводства 9–10 тыс. лет назад и встречается преимущественно у европейских народов. Более 90% шведов и датчан способны усваивать молоко, и лишь небольшая часть населения Скандинавии отличается гиполактазией. В то же время в Китае гиполактазия распространена очень широко, и молоко считается пригодным лишь для питания детей. В России частота гиполактазии составляет около 30% для русских и более 60–80% для коренных народов Сибири и Дальнего Востока. Народы, у которых гиполактазия сочетается с молочным скотоводством, традиционно используют не сырое молоко, а кисломолочные продукты, в которых молочный сахар, переработанный бактериями, легко усваивается.

Распространение единой для всех западной диеты в некоторых странах приводило к тому, что часть детей с недиагностированной гиполактазией реагировалa на молоко расстройством пищеварения, которое принимали за кишечные инфекции.

Еще несколько примеров. Эскимосы при традиционном питании обычно потребляют до 2 кг мяса в день. Переварить такие количества мяса можно лишь при сочетании специфических культурных (кулинарных) традиций, микрофлоры определенного типа и наследственных физиологических особенностей пищеварения.

У народов Европы встречается целиакия - непереносимость белка глутена, содержащегося в зернах ржи, пшеницы и других злаков. Она вызывает при потреблении в пищу злаков множественные нарушения развития и умственную отсталость. Заболевание на порядок чаще встречается в Ирландии, чем в странах континентальной Европы, вероятно, потому, что в ней пшеница и другие злаки традиционно играли меньшую роль в питании.

В некоторых популяциях, представляющих коренные народы Севера, часто отсутствует фермент трегалаза, расщепляющий углеводы грибов. Видимо, вследствие этого в этих местах грибы считаются пищей оленей, не пригодной для человека.

Для жителей Восточной Азии характерна другая наследственная особенность обмена веществ. Известно, что многие монголоиды даже от небольших доз спиртного быстро пьянеют и могут получить сильную интоксикацию. Это связано с накоплением в крови ацетальдегида, образующегося при окислении алкоголя ферментами печени. Известно, что алкоголь окисляется в печени в два этапа: сначала превращается в токсичный альдегид, а затем окисляется с образованием безвредных продуктов, которые выводятся из организма. Скорость работы ферментов первого и второго этапов (алкогольдегидрогеназы и ацетальдегиддегидрогеназы) задается генетически. Для аборигенов Восточной Азии характерно сочетание «быстрых» ферментов первого этапа с «медленными» ферментами второго этапа. В этом случае при приеме спиртного этанол быстро перерабатывается в альдегид (первый этап), а его дальнейшее удаление (второй этап) происходит медленно. Такая особенность восточных монголоидов связана с сочетанием двух мутаций, влияющих на скорость работы упомянутых ферментов. Предполагается, что это служит адаптацией к неизвестному пока фактору среды.

Приспособления к типу питания связаны с комплексами генетических изменений, немногие из которых пока детально изучены на уровне ДНК. Известно, что около 20–30% жителей Эфиопии и Саудовской Аравии способны быстро расщеплять некоторые пищевые вещества и лекарства, в частности, амитриплин, благодаря наличию двух или более копий гена, кодирующего один из видов цитохромов - ферментов, разлагающих чужеродные вещества, поступающие в организм с пищей. У других народов удвоение данного гена цитохрома встречаются с частотой не более 3–5%, и распространены неактивные варианты гена (от 2–7% у жителей Европы до 30% в Китае). Возможно, число копий гена увеличивается из-за особенностей диеты (использования больших количеств перца или съедобного растения тефф, составляющего до 60% продуктов питания в Эфиопии и нигде больше не распространенного в такой степени). Однако определить, где причина, а где следствие, в настоящее время невозможно. Случайно ли увеличение в популяции носителей множественных генов позволило людям есть какие-то особые растения? Или, наоборот, употребление перца (или другой пищи, для усвоения которой необходим данный цитохром) повысило частоту удвоения гена? Как тот, так и другой процесс мог иметь место в эволюции популяций.

Очевидно, что пищевые традиции народа и генетические факторы взаимодействуют. Употребление той или иной пищи становится возможным лишь при наличии определенных генетических предпосылок, а диета, впоследствии ставшая традиционной, действует как фактор отбора, влияя на частоту аллелей и распространение в популяции наиболее адаптивных при таком питании вариантов.

Традиции обычно меняются медленно. Например, переход от собирательства к земледелию и соответствующая смена диеты и образа жизни осуществлялись на протяжении десятков и сотен поколений. Относительно медленно происходят и сопровождающие такие события изменения генофонда популяций. Частоты аллелей могут меняться постепенно, на 2–5% за поколение. Однако другие факторы, например эпидемии, часто связанные с войнами и социальными кризисами, могут в несколько раз поменять частоты аллелей в популяции на протяжении жизни одного поколения за счет резкого снижения численности популяции. Так, завоевание Америки европейцами привело к гибели до 90% коренного населения некоторых регионов, причем эпидемии внесли больший вклад, чем войны.

Устойчивость к инфекционным заболеваниям

Оседлый образ жизни, развитие земледелия и скотоводства, повышение плотности населения способствовали распространению инфекций и появлению эпидемий. Так, туберкулез - изначально болезнь крупного рогатого скота - человек приобрел после одомашнивания животных. С ростом городов заболевание стало эпидемически значимым, что сделало актуальной устойчивость к инфекциям, также имеющую генетическую компоненту.

Первый изученный пример устойчивости к инфекционным заболеваниям - распространение в тропической и субтропической зонах серповидноклеточной анемии, названной так из-за серповидной формы эритроцитов, определяемой при микроскопическом анализе крови. Эта наследственная болезнь крови обусловлена мутацией в гене гемоглобина, приводящей к нарушению его функций. Носители мутации оказались устойчивыми к малярии. В зонах распространения малярии наиболее адаптивно гетерозиготное состояние: гомозиготы с мутантным гемоглобином погибают от анемии, гомозиготы по нормальному гену болеют малярией, а гетерозиготы, у которых анемия проявляется в мягкой форме, защищены от малярии.

С устойчивостью к кишечным инфекциям связывают носительство мутации муковисцидоза, в гомозиготном состоянии вызывающей тяжелое заболевание и гибель в раннем детстве из-за нарушения водно-солевого обмена.

Такие примеры показывают, что платой за повышенную адаптивность гетерозигот может быть гибель на порядок реже встречающихся гомозигот по болезнетворной мутации, которые неизбежно появляются при увеличении ее популяционной частоты.

Еще один пример генетической детерминации восприимчивости к инфекциям - так называемые прионные заболевания. К ним относится губчатая болезнь мозга рогатого скота (коровье бешенство), участившаяся среди рогатого скота после появления новой технологии переработки кормовой костной муки. Инфекция с очень небольшой частотой передается человеку через мясо больных животных. Немногие заболевшие люди оказались носителями редкой мутации, раньше считавшейся нейтральной.

Существуют мутации, защищающие от инфицирования вирусом иммунодефицита человека либо замедляющие развитие болезни после заражения. Две таких мутации встречаются во всех популяциях (с частотой от 0 до 70%), а одна из них, уже упоминавшаяся выше, только в Европе (частота 3–25%). Предполагается, что эти мутации распространились в прошлом в связи с тем, что обладают защитным эффектом также и в отношении других эпидемических заболеваний.

Развитие цивилизации и генетические изменения

Кажется удивительным тот факт, что питание бушменов (в благоприятные периоды) - охотников-собирателей, живущих в Южной Африке, - оказалось соответствующим рекомендациям ВОЗ по общему балансу белков, жиров, углеводов, витаминов, микроэлементов и калорий. Но это всего лишь отражение того факта, что биологически человек и его непосредственные предки на протяжении сотен тысяч лет адаптировались к образу жизни охотников-собирателей.

Изменение традиционного питания и образа жизни отражается на здоровье людей. Например, афроамериканцы чаще, чем евроамериканцы, болеют гипертонией. У северноазиатских народов, традиционная диета которых была богата жирами, переход на европейскую высокоуглеводную диету способствует развитию диабета и других заболеваний.

Преобладавшие ранее представления о том, что с развитием производящего хозяйства (земледелия и скотоводства) здоровье и питание людей неуклонно улучшается, сейчас опровергнуто. После появления земледелия и скотоводства значительное распространение получили многие заболевания, редко встречавшиеся у древних охотников-собирателей или вообще им неизвестные. Сократилась продолжительность жизни (от 30–40 лет у охотников-собирателей до 20–30 у ранних земледельцев). Хотя относительная детская смертность (60%, из них 40% - в первый год жизни) не изменилась, но при увеличении рождаемости в 2–3 раза в абсолютных цифрах она выросла. Костные останки людей раннеземледельческих культур гораздо чаще имеют признаки перенесенной анемии, недоедания, различных инфекций, чем у доземледельческих народов. Лишь в средневековье наступил перелом, и средняя продолжительность жизни стала увеличиваться. Заметное улучшение здоровья населения в развитых странах связано с появлением современной медицины.

Сегодня для земледельческих народов характерны высокоуглеводная и высокохолестериновая диета, использование соли, снижение физической активности, оседлый образ жизни, высокая плотность населения, усложнение социальной структуры. Приспособление популяций к каждому из этих факторов сопровождается генетическими изменениями: адаптивных аллелей становится больше, а неадаптивных меньше, поскольку их носители менее жизнеспособны или менее плодовиты. Например, низкохолестериновая диета охотников-собирателей делает адаптивной для них способность к интенсивному поглощению холестерина из пищи, но при современном образе жизни она становится фактором риска атеросклероза и сердечно-сосудистых заболеваний. Эффективное усвоение соли, бывшее полезным при ее недоступности, в современных условиях превращается в фактор риска гипертонии. При рукотворном преобразовании среды обитания человека популяционные частоты аллелей изменяются так же, как и при адаптации к ее естественным изменениям.

Рекомендации врачей по поддержанию здоровья - физическая активность, прием витаминов и микроэлементов, ограничение соли и т. п., по сути, искусственно воссоздают условия, в которых человек жил большую часть времени своего существования как биологического вида (Коротаев, 2003).

Следует отметить еще один важный аспект изменений, связанных с социальной эволюцией - это утрата поддержки родовой группы. Большую часть человеческой истории родовые или племенные группы играли огромную роль, определяя место человека в жизни, систему его ценностей и убеждений. Важнейшей частью представлений человека о самом себе было чувство принадлежности к определенной группе. Утрата поддержки родовой группы в ориентированных на индивидуальный успех индустриализованных обществах считается одним из факторов, порождающих депрессию. Известно, что существует генетически детерминированная предрасположенность к депрессии и найдены гены, за нее отвечающие. Большинство исследований выполнено в западных странах, поэтому не известно, как проявляются «гены депрессии» в коллективистских культурах. Возможно, там они адаптивны. Речь может идти о генетической детерминации поведения, больше или меньше соответствующего тому или иному типу социальной структуры. Однако чтобы перейти от предположений к утверждениям, необходимы дальнейшие исследования.

^

Генетическое разнообразие народов

Вероятно, исходная предковая популяция Homo sapiens состояла из небольших групп, ведущих жизнь охотников-собирателей. Мигрируя, люди несли с собой свои традиции, культуру и свои гены. Возможно, они также обладали и праязыком. Пока лингвистические реконструкции происхождения языков мира ограничены периодом в 15 тыс. лет, и существование общего праязыка только предполагается. И хотя гены не определяют ни язык, ни культуру, в некоторых случаях генетическое родство народов совпадает и с близостью их языков и культурных традиций. Но есть и противоположные примеры, когда народы меняли язык и перенимали традиции своих соседей. Такая смена происходила чаще в районах контактов различных волн миграций или же в результате социально-политических изменений или завоеваний.

Конечно, в истории человечества популяции не только разделялись, но и смешивались. На примере линий мтДНК результаты такого смешения можно наблюдать у народов Волго-Уральского региона. Здесь столкнулись две волны расселения, европейская и азиатская. В каждой из них к моменту встречи на Урале в мтДНК успели накопиться десятки мутаций. У народов Западной Европы азиатские линии мтДНК практически отсутствуют. В Восточной Европе они встречаются редко: у словаков - с частотой 1%, у чехов, поляков и у русских Центральной России - 2%. По мере приближения к Уралу частота их возрастает: у чувашей - 10%, у татар - 15%, у разных групп башкир - 65–90%. То есть в данном регионе проходит современная граница волн расселения европейских и азиатских популяций. Эта граница проходит географически примерно по Уралу, а популяционно-генетически - между башкирами, обитающими по обе стороны Уральского хребта, и их западными соседями татарами. Заметим, что вклад европейских и азиатских генетичеаких линий не коррелирует с языком, на котором говорят эти народы. Закономерно, что у русских Волго-Уральского региона количество азиатских линий больше (10%), чем в Центральной России.

Генетическиеи исследования показывают и разнообразные детали формирования отдельных народов. Например, азиатские линии мтДНК у народов Волго-Уральского региона имеют разное происхождение - часть их носителей появилась, вероятно, из Сибири, а другая часть - из Центральной Азии. Сочетание выявленных генетических линий образует мозаику, характеризующую каждый из народов, населяющих территорию Волго-Уральского региона в настоящее время (Янковский, Боринская, 2001).

Проекты изучения генетического разнообразия людей дают сведения, важные для здравоохранения и для реконструкции исторических событий. Сейчас известно, что многие мутации не нейтральны, скорость накопления мутаций может быть различной для разных участков ДНК и на разных этапах эволюции. Поэтому абсолютные даты, полученные на основе молекулярных методов, могут достаточно сильно различаться в зависимости от используемой системы анализа, и будут утоняться по мере развития методов экспериментального анализа и теоретических инструментов исследования. Сложившиеся к настоящему времени представления об общей последовательности эволюционных и миграционных событий в истории человека как вида вряд ли сильно изменятся. Это, однако, не исключает сюрпризов при выявлении деталей формирования и взаимодействия разных популяций, приводивших к возникновению и смене языков и культур. Итогом таких исследований будет не только лучшее понимание причин, определивших современную структуру народонаселения Земли на тех или иных территориях, но и предсказание тенденций этих процессов, что может быть крайне важным для выработки стабильных и сбалансированных отношений между народами в будущем.
^

Этические аспекты изучения

генетических различий людей

Итак, на формирование генофондов этнических групп влияет множество процессов: накопление мутаций в изолированных группах, миграции и смешение народов, адаптация популяций к условиям среды. Географические, языковые и иные барьеры между популяциями способствуют накоплению генетических различий между ними, которые, однако, между соседями обычно не очень значительны. Большинство человеческих популяций занимают промежуточное положение относительно основных выделенных рас, а географическое распределение их наследственных особенностей отражает континуум меняющихся признаков и меняющихся генофондов. Ни одна человеческая группа не может иметь «лучший» или «худший» генофонд - так же, как нельзя назвать «самый лучший» ход в шахматной игре. Все зависит от истории народа и конкретных условий обитания, к которым ему приходилось приспосабливаться. Генетические различия не подразумевают превосходства какой-либо расы, этнической или иной группы, образованной по какому-либо признаку (типу хозяйства или социальной организации). Напротив, они подчеркивают эволюционную ценность разнообразия человечества, позволившую ему освоить все климатические зоны Земли.

Литература

1. Приселков М. Д. История русского летописания XI–XV вв. СПб., 1996.

2. Коротаев А. В. Факторы социальной эволюции. М., ИВ РАН, 1997. 47 с.

3. Уилсон А. К., Канн Р.Л. Недавнее африканское происхождение людей // В мире науки. 1992. №1

4. Янковский Н. К., Боринская С. А. Наша история, записанная в ДНК // Природа. 2001. №6. С.10–17.

5. Боринская С. А. Генетическое разнообразие народов // Природа, 2004. №10. С. 33–39.

Молекулярно-генетические подходы эффективны не только при изучении глобальных вопросов эволюции человека как ви­да. Большую роль маркеры ДНК играют и при изучении этни­ческой истории в отдельных регионах мира. Один из весьма изученных регионов - это Западная Европа.

В работе Джауме Бертранпетита и его коллег был проведен анализ митохондриальной ДНК из популяций Европы и Ближ­него Востока. Всего было исследовано около 500 человек, среди них - баски, британцы, швейцарцы, тосканцы, сардинцы, бол­гары, турки, жители Ближнего Востока, включавшие бедуинов, палестинцев и йеменских евреев - т. е. народов, относящихся к европеоидам . В данной работе, как и во многих предыдущих, был продемонстрирован низкий уровень генетического разно­образия европейцев, по сравнению с другими, в особенности, африканцами. Это может быть связано с разными причинами: например, с относительно недавним их происхождением, с вы­сокой скоростью миграции, или в связи с быстрым демографи­ческим ростом, который, как полагают, происходил в доледниковый период.

Однако, несмотря на сравнительную гомогенность евро­пейских популяций, имеются определенные географические различия в распределении наблюдаемой генетической вариа­бельности. Это позволило достоверно реконструировать пути миграции народов в далеком прошлом.

Полученные результаты подтвердили предположение о пе­редвижении населения из Ближнего Востока в Европу. Расчеты показа­ли, что эта миграция осуществлялась в течение длительного времени - на протяжении десятков тысячелетий. Данные поз­воляют предположить, что основные генетические характери­стики европейцев, по-видимому, сложились еще в палеолите, тогда как более поздние неолитические миграции оказывали меньшее влияние на изучаемый генофонд.

К аналогичному выводу пришли и другие исследователи, проведя анализ митохондриальных ДНК у более чем 700 чело­век из 14 популяций Европы и Ближнего Востока. Подробный анализ ветвей каждого варианта мтДНК позволил авторам сде­лать следующий вывод: большинст­во населения современной Западной Европы, являет­ся потомками ранних поселенцев, пришедших из районов Бли­жнего Востока в период верхнего палеолита . Обнаружены также «следы» и более поздних продвижений в Европу выход­цев из Ближнего Востока, однако эти миграции оказали значи­тельно меньшее влияние, чем предыдущая.

В последующих работах, выполненных Торони и коллегами, были также исследованы митохондриальные ДНК жителей Ев­ропы, Ближнего Востока и северо-западной Африки. При этом в каждом образце был осуществлен анализ обоих гипервариа­бельных участков, а также полиморфизма вдоль всей молекулы, что позволило определить гаплотип в каждом образце и вы­явить родственные группы гаплотипов, обозначенные как гаплогруппы .

Эти исследования показали, что у европейцев с наибольшей частотой встречаются две родственные гаплогруппы митохондриальной ДНК, обозначенные авторами как Н и V . Подробный анализ этих гаплогрупп, включая их географичес­кое распределение, позволил авторам сделать предположение, что гаплогруппа V является автохтонной (т. е. местной) для Ев­ропы. Она возникла 10-15 тысячелетий назад на севере Иберий­ского полуострова или на юго-западе Франции, затем диффундировала на северо-восток (вплоть до Скандинавии) и на юг до северо-запада Африки.

В настоящее время она с наибольшей частотой встречается у басков и саамов (которые считаются самыми древними жителя­ми Европы), но отсутствует на Кавказе, юге Европы и Ближнем Востоке. Оценка среднего числа нуклеотидных различий от предкового гаплотипа показывает, что иберийские популяции имеют наибольшее разнообразие по данному признаку. Имен­но это позволило сделать вывод, что с большой вероятностью местом возникновения группы V является Иберийский полу­остров и примыкающие к нему территории юго-западной Франции.

Гаплогруппа Н является самой распространенной в Европе, она встречается в разных популяциях с частотой от 20 до 60%, обнаруживая постепенную (клинальную) изменчивость с вос­тока на запад и север. Она обнаруживается с меньшей частотой в других европеоидных популяциях, например, на Ближнем Востоке, в Индии, на севере Африки, в Сибири. Интересно, что наибольшее разнообразие вариантов гаплогруппы Н обнаруже­но в популяциях Ближнего Востока . Это позволяет считать, что она возникла именно в этих популяциях, причем оценка ее воз­раста составляет 25-30 тысячелетий. Однако в Европу она проникла позднее - 15-20 тысячелетий назад, т. е. в период верхнего палеолита .

Таким образом, данная работа выявила множество интерес­ных деталей в генетической истории европейцев, но в целом подтвердила прежние результаты о древности этих популяций (по крайней мере, по женской линии).

Изучение полиморфизма Y -хромосомных маркеров у евро­пейцев также показывает их древнее происхождение. Работа Семино и соавторов так и называется: «Генетическое наследие человека палеолита в ныне живущих европейцах: возможности Y-хромосомных маркеров». В этой работе принимал участие большой интернациональный коллектив, состоящий из двух американских и нескольких европейских лабораторий, вклю­чая российскую. Было изучено более 1000 мужчин из 25 разных регионов Европы и ближнего Востока.

Анализ по 22 маркерам Y-хромосомы показал, что более 95% изученных образцов могут быть сведены к десяти гаплотипам , т. е. к 10 историческим родословным. Из них два гаплотипа, обозначенные как Eu 18 и Eu 19 , появились в Европе в палеолите. Более 50% всех изученных европейских мужчин от­носятся к этим древним гаплотипам. Они являются родствен­ными и отличаются лишь одной точковой заменой (мутация М17), однако их географическое распределение имеет противо­положную направленность. Частота Eu 18 уменьшается с запада на восток, будучи наиболее выраженной у басков. Оценка воз­раста этого гаплотипа составляет примерно 30 тысяч лет, возмо­жно, это самая древняя родословная в Европе. По типу географического распределения она очень напоминает распре­деление митохондриальной гаплогруппы V , также имеющей верхне-палеолитическое происхождение. Можно предполо­жить, что гаплотип Eu 18 Y-хромосомы и гаплотип V митохонд­риальной ДНК являются характеристиками одной и той же древней европейской популяции, проживавшей в верхнем па­леолите в районе Пиренейского полуострова.

Родственный Y-хромосомный гаплотип Eu 19 имеет совсем другое распределение в европейских популяциях. Он отсутству­ет в Западной Европе, его частота увеличивается к востоку и до­стигает максимума в Польше, Венгрии и на Украине, где предыдущий гаплотип Eu 18 практически отсутствует. Самое высокое разнообразие микросателлитных маркеров в составе гаплотипа Eu 19 найдено на Украине . Это позволило сделать предположение, что именно отсюда началась экспансия дан­ной исторической родословной. К сожалению, среди вариантов митохондриальной ДНК пока не найдено такого, который имел бы сходное с Eu 19 географическое распределение.

Как можно объяснить столь различную картину распростра­нения столь родственных гаплотипов? Из данных по распро­странению Eu 18 и Eu 19 можно предположить, что это связано со следующим сценарием. Во время последнего ледникового периода люди вынуждены были покинуть Восточную и Цент­ральную Европу. Часть из них переместилась в Западные обла­сти. Некоторые нашли убежище на Северных Балканах , единственном месте в Центральной Европе, где была возмож­ность существования. Таким образом, ледниковый период лю­ди переживали в 2-х регионах (западная Европа и Северные Балканы), находясь в значительной изоляции друг от друга. Та­кой сценарий подтверждают также данные по флоре и фауне того же периода. Здесь также была выявлена изоляция в указан­ных областях в ледниковый период. После чего наблюдалось распространение переживших видов и популяций из данных заповедных мест.

Дополнительные молекулярно-генетические данные под­тверждают наличие двух очагов, из которых происходило рас­пространение двух рассмотренных гаплотипов.

Среди других Y-хромосомных гаплотипов большая часть имеет географическое распределение, указывающее на их про­исхождение из региона Ближнего Востока. Однако два из них появились в Европе (или, возможно, здесь и возникли) в па­леолите.

Характеристики этих исторических родословных очень на­поминают таковые для гаплогруппы Н митохондриальной ДНК. Возможно, что они маркируют одни и те же исторические события, связанные с расселением ближневосточных популя­ций в Европе в период, предшествующий последнему леднико­вому максимуму.

Все остальные Y-хромосомные гаплотипы появились в Ев­ропе позже. В неолите произошло распространение ряда гапло­типов из региона Ближнего Востока, по мнению многих авторов, в связи с распространением земледельческой культуры.

Интересно, что в работе был выявлен новый вариант Y-хро­мосомы (мутация М178), встречающийся только в северо-вос­точных областях Европы. Возраст этого гаплотипа оценивается величиной, не превышающей 4000 лет, а его распространение может отражать сравнительно недавнюю миграцию уральских популяций.

Таким образом, в данной работе показано, что лишь немно­гим более 20% европейских мужчин относятся к историческим родословным (выявленным с помощью Y-хромосомного поли­морфизма), которые появились в Европе сравнительно недавно - после ледникового периода в неолите. Около 80% мужчин Европы относятся к более древним европейским родословным линиям, нисходящим ко времени верхнего палеолита.

В последнее время активно дискутировалась идея, выска­занная Марком Стоннекингом еще в 1998 году, что более высо­кая вариабельность популяций (особенно европейских) по Х-хромосомным маркерам, в сравнении с митохондриальными, связана с различиями в дистанциях миграций между жен­щинами и мужчинами . Согласно этой идее, миграция мужчин оказывается более ограниченной пространственно , чем мигра­ция женщин. Однако к таким выводам следует относиться с большой осторожностью, так как еще многие популяционные свойства маркеров ДНК, особенно в сравнении одного с дру­гим, мало изучены. Кроме того, большой вклад могут вносить в это явление социально-демографические факторы, напри­мер, такие, как полигамия , имеющаяся или имевшаяся ранее у многих народов.

Тем не менее, необходимо подчеркнуть, что наличие такой возможности, как анализ отдельно и мужской, и женской популяционной истории, открывает новые перспективы в изучении популяций, которых не было ранее, до обнаружения полоспецифических маркеров ДНК, связанных с митохондриальным и Х-хромосомным полиморфизмом.

Изучение популяций американских индейцев и их связи с сибирскими народами также осуществлялось с помощью мар­керов ДНК. Проблема раннего заселения Американского кон­тинента представляет собой одну из наиболее противоречивых тем в исследованиях по эволюции человека. На основании дан­ных антропологии, археологии, лингвистики и генетики при­нято считать, что предки коренного населения Америки при­были из Азии. Однако время, место происхождения и число волн миграции до сих пор являются предметом дискуссий.

Ранее, на основании синтеза мультидисциплинарных исследова­ний было высказано предположение о трех независимых вол­нах миграции предковых азиатских популяций через Берингов пролив . Изучение классических маркеров ДНК выявило тен­денции, которые можно расценивать как подтверждение трехволновой модели миграции.

Однако первые результаты анализа митохондриальной ДНК показали, что их интерпретация может быть значительно шире, в том числе - в поддержку модели с четырьмя волнами мигра­ции. Дальнейший анализ данных по митохондриальной ДНК позволил свести их к одному предположению, что все популя­ции американских индейцев могут быть сведены к единой предковой популяции , проживавшей ранее в регионе Монго­лии и Северного Китая.

Для того чтобы проверить столь противоречивые гипотезы, необходимо было исследовать дополнительные полиморфные системы ДНК. Было проведено исследование 30 вариабельных Y-хромосомных локусов у американских индейцев и несколь­ких сибирских популяций в сравнении с другими регионами мира. Это позволило выявить общих предков коренных жите­лей Америки с популяциями кетов из бассейна реки Енисей и с популяциями алтайцев , населяющих Алтайские горы. Таким образом, было показано преимущественно центрально-сибир­ское происхождение американских индейцев по мужской ли­нии, которые могли мигрировать в Америку в доледниковый период.

Карафет и соавторы исследовали более 2000 мужчин из 60 популяций мира, включая 19 групп американских индейцев и 15 групп аборигенных сибирских народов. В данном исследова­нии было показано, что у американских индейцев имеется не один праотцовский гаплотип, а девять, причем два из них являются исходными, родоначальными гаплотипами Нового Света. Т.е. можно было предполагать по меньшей мере две волны миграции в Новый Свет, причем обе из региона озера Бай­кал, включая Са­янские и Алтайские горы. И, наконец, самые последние данные однозначно показали, что была одна волна миграции из Сибири в Америку 13 тысяч лет назад.

С помощью полиморфных маркеров ДНК были проведены интересные исследования по заселению тихоокеанских архипе­лагов, а также острова Мадагаскар . Существовала точка зрения о переселении людей из Юго- Восточной Азии на тихо­океанские острова. Однако подробный анализ показал, что это был непростой и длительный процесс.

Изучение митохондриальных ДНК в данном регионе пока­зало, что на островах Океании часто встречается (с частотой до 80-90%) специфическая делеция в 9 пар нуклеотидов, в Юго-Восточной Азии она встречается значительно реже. Подробный анализ показал, что данная делеция встречается в разном гене­тическом контексте , т. е. в сочетании с различными полиморф­ными участками. Эти сочетания принято называть мотивами , причем различают меланезийский, полинезийский и мотив Юго-Восточной Азии . Все представленные данные позволили предположить, что население островов Меланезии и Юго-Восто­чной Азии (Индонезия) в древности не смешивалось. Восточная Полинезия заселялась из обоих этих регионов очень малыми группами, что привело к формированию смешанного генофонда этих островов.

Интересной работой является исследо­вание населения Мадагаскара , проводимое в течение многих лет Химлой Содиал и коллегами. История и время заселения этого острова остаются неизвестными из-за отсутствия пись­менных свидетельств. Немногочисленные археологические данные указывают, что первые поселенцы явились выходцами предположительно из Индонезии (находки датируются нача­лом первого тысячелетия нашей эры), позднее датируется вол­на заселения из Африки. От Африки Мадагаскар отделен проливом шириной 400 км, расстояние до Индонезии - 6400 км. Население острова составляет 11 млн человек и подразделено на 18 этнических групп. В диалектах имеются особенности, указывающие на арабское и африкан­ское влияние.

Изучение митохондриальной ДНК у населения Мадагаскара обнаружило высокую частоту специфической делеции разме­ром 9 пар нуклеотидов, находящейся в окружении полиморф­ных участков, называемых полинезийским мотивом . Этот результат можно объяснить тем, что первые поселенцы Мадага­скара, по-видимому, были мореплавателями и прибыли из Полинезии или относились к той популяции, выходцы из которой заселяли Полинезию, но их путь в Мадагаскар проходил через Индонезию . То, что эти дан­ные получены при анализе митохондриальной ДНК, говорит о том, что в составе прибывших на Мадагаскар групп имелись женщины.

Изучение Y-хромосомного полиморфизма у мужчин Мада­гаскара показало следующую картину. Большая часть (более чем 2/3) современных родословных линий относится к афри­канскому типу и только 15% - к вариантам из Юго-Восточной Азии. Это говорит о том, что переселение из Африки, которое могло происходить как одновременно, так и в более позднее время, чем азиатское, осуществлялось бо́льшим числом людей. Было показано, что обе линии переселенцев, как африканских, так и азиатских, пережили период резкого снижения численно­сти, возможно из-за каких-то внешних воздействий (природ­ные аномалии, эпидемии чумы или что-то еще).

Очень интересное исследование, которое осуществляется несколькими интернациональными группами, ведется в Ин­дии . Известна высокая подразделенность индийского общест­ва, в том числе кастовая . Изучение митохондриальной ДНК и Y-хромосомного полиморфизма у представителей различных каст и племен выявило много любопытных деталей. Женское население Индии, как показывает данное исследование, выгля­дит более или менее гомогенным. Более 60% жителей Индии имеют варианты митохондриальной ДНК, относящиеся к древ­ней группе ранней (возможно, первой) волне миграции из Вос­точной Африки , осуществлявшейся примерно 60 тыс. лет назад. В то же время в некоторых районах Индии в высших кастах со­держание вариантов митохондриальной ДНК, сходных с евро­пейскими , выше, по сравнению с низшими кастами.

Что касается Y-хромосомного анализа, то здесь выявлены более четкие корреляции с кастовой принадлежностью. Чем выше ранг касты, тем выше содержание вариантов, сходных с европейскими, причем, что особенно интересно, с восточноев­ропейскими. Это является подтверждением точки зрения некото­рых археологов, что прародина завоевателей Индии - индо-ариев , основавших высшие касты, находится на юге Восточной Европы.

Удивительные результаты были получены совсем недавно интернациональной группой под руководством английского исследователя Криса Тайлер-Смита . Проводилось широкомас­штабное изучение Y-хромосомного полиморфизма во множе­стве азиатских популяций: в Японии, Корее, Монголии, Китае, в государствах Средней Азии, в Пакистане, Афганистане и на Южном Кавказе. В 16 популяциях из довольно обширного ази­атского региона, простирающегося от Тихого океана до Кас­пийского моря, достаточно часто встречалась одна и та же генетическая линия Y-хромосомы. В среднем по данному ре­гиону эта линия встречается у 8% мужчин. Это составляет 0,5% всего мужского населения Земли. В некоторых районах внут­ренней Монголии, Центральной и Средней Азии данная линия встречается с частотой от 15 до 30%.

Расчеты показывают, что эта линия Y-хромосомы произош­ла в Монголии примерно 1000 лет назад (в интервале 700-1300 лет) и быстро распространилась по указанной территории. Та­кое явление не могло произойти случайно. Если бы причиной была миграция некой популяции, то исследователи должны были обнаружить несколько таких линий. Проанализировав географию распространения и время возникновения данной ге­нетической линии, авторы сделали сенсационное предположе­ние, что этот генетический вариант принадлежит Чингисхану и его ближайшим родственникам по мужской линии. В пределах обозначенного времени на данной территории действительно существовала империя именно этого завоевателя. Известно, что сам Чингисхан и его ближайшие родственники имели мно­го потомков, которые сохраняли свое престижное положение на протяжении длительного времени. Таким образом, здесь происходил отбор не вследствие биологического преимущест­ва, а по социальным причинам, что представляет собой новое явление в генетике.

Из приведенных примеров изучения популяций различных регионов мира видно, что маркеры ДНК дают новое понимание многих аспектов эволюции человека, как не­давних, так и отдаленных.