Физиология движения и мускулатура рыб. Общие сведения о рыбах. Строение тела рыб и их движение, дыхание Рыба передвигается вперед преимущественно

12.10.2023 Дом и семья

Природа поступила очень разумно, когда наделила рыб особыми приспособлениями, помогающими обитателям водоемов, преодолевать сопротивление воды во время движения в ее толщах. Разумеется, есть они и у декоративных аквариумных рыбок.

За сотни миллионов лет, которые существуют рыбы на нашей планете, можно с уверенностью утверждать, что они, как никто другой, в результате своей длительной эволюции обзавелись множеством уловок и «секретов», позволяющих этим удивительным представителям подводной фауны с огромной выгодой для себя использовать свою природную среду обитания. Одним из таких секретов как раз и является способность передвигаться в воде долго и с большой скоростью, не чувствуя при этом усталости и не тратя попусту накопленную энергию.

Способы передвижения рыб, скорость и выносливость

Для рыб характерны такие способы передвижения как плавание, ползание, полет. Нас интересует первый способ, потому что он присущ подавляющему виду рыб. Однако и эти виды тоже могут летать (например, если в панике выскакивают из аквариума от преследующего их хищника) и ползать, когда, плюхнувшись на пол, продолжают движение по суше.

Нас все-таки интересует скорость плавания рыб и их выносливость. Для плавающих рыб, независимо от места их обитания (озеро Титикака или домашний аквариум), характерны четыре вида скорости – бросковая, максимальная, крейсерская, промежуточная.

  • с бросковой скоростью рыбы кидаются на добычу и спасаются от обнаруженной явной близкой угрозы. Ихтиологи установили, что долго с такой скоростью рыбы плыть не могут – лишь какие-то доли секунды. После броска они снижают скорость движения до максимальной,
  • на максимальной скорости рыбы «убегают» от пасти хищника. Сохранять ее они способны в зависимости от своего размера и строения от 20 секунд (декоративные аквариумные рыбки) до нескольких минут (более крупные по размеру и развитию мускулатуры обитатели природных водоемов: рек, морей, океанов),
  • устав, рыбы переходят на крейсерскую скорость, которую способны поддерживать довольно долго,
  • с промежуточной скоростью (или обычной) рыба не может плавать постоянно, потому что ее поведение в воде постоянно меняется: то она увидела кусочек корма и сделала за ним бросок, то она увидела опасность со стороны крупного соседа по аквариуму, то еще что-то заставило рыбку «переключиться» на другую скорость.

Рыбам, как и нам, людям, присуща одна закономерность: чем быстрее мы двигаемся, тем скорее устаем. Как установили ихтиологи, мелкие рыбки – гораздо более выносливы и их мышцы лучше приспособлены к частому «переключению» скоростей.

Что способствует тому, чтобы рыбы двигались быстро и не утомлялись:

  • обтекаемая форма тела помогает рыбам набирать большую скорость. Если обитатели аквариума правильно пообобраны и миниатюрным рыбкам ничто не грозит, необходимость прибегать к броскам и максимальной скорости у них если и возникает, то крайне редко, так как владелец аквариум следит, чтобы корма для всех хватало. Так или иначе, в погоне за едой опережают соперников те рыбки, тельце которых имеет вытянутую обтекаемую форму, лучше противостоящую сопротивлению воды. В этой связи нет ничего удивительного в том, что в природе рекордсменом среди рыб по скорости признан парусник, обитающий в западных водах Тихого и тропических водах Индийского океана. Своим названием рыба обязана спинному плавнику в виде паруса. Ученые установили, что эта рыба способна за короткое время развить скорость до 110 км/ч. Из сухопутных животных такая скорость не по зубам даже быстроногому гепарду. Такой прыткостью рыба-парус обязана, в первую очередь, строению своего тела;
  • выделяемое кожей рыб слизистое вещество снижает силу сопротивления воды. Выделение такой слизистой смазки характерно для большинства видов рыб (морских, пресноводных, промысловых, декоративных). Чем больше слизи выделяется у рыбы, тем быстрее она плавает. Такая естественная смазка сглаживает все неровности на теле рыбы и кратно уменьшает трение тела рыбы о воду;
  • плавники и хвост способствуют сохранению сил у рыб и экономии энергии,
  • благодаря жабрам усиливается приток кислорода к сосудам. Они в свою очередь снабжают жабры рыб кровью, что усиливает снабжение кислородом клеток тканей мышц подводных обитателей.

Все эти анатомические, биологические и физиологические особенности рыб необходимы им для экономии энергии при неустанном постоянном передвижении в воде.

Роль физических свойств воды в жизни рыб огромна. От плодородности воды: значительной степени Зависят условия движения, рыбы в. воде. Оптические свойства воды и содержание в ней взвешенных частиц влияют как на условия охоты рыб, ориентирующихся при помощи органов зрения, так и на условия защиты от врагов.

Температура воды в значительной степени определяет интенсивность процесса обмена. веществ у рыб. Изменения температуры во многих случаях являются натуральным раздражителем, определяющим! начало нереста, миграции и т, д. Другие физические и химические свойства воды, такие как соленость, насыщенность; кислородом, вязкость, также имеют огромное значение.

ПЛОЩАДЬ, ВЯЗКОСТЬ, ДАВЛЕНИЕ И ДВИЖЕНИЕ ВОДЫ.

СПОСОБЫ ПЕРЕДВИЖЕНИЯ РЫБ.

Рыбы живут в среде значительно более плотной и вязкой, Чем воздух; с этим связан ряд особенностей в их строении, функциях. их органов и поведении.

Рыбы приспособлены передвигаться как в стоячей, так и в текущей воде. Движения воды и поступательные, и колебательные играют в жизни рыб весьма существенную роль. Рыбы приспособлены к движению в воде различными способами и с различной скоростью. С этим связаны форма тела, строение" плавников и некоторые иные, особенности.в строении рыб.

По форме тела рыб можно разделить на несколько типов:

Торпедовидный - наиболее хорошие пловцы, обитатели толщи воды, К этой группе относятся скумбрия, кефаль, сельдевая акула, лосось и др. Стреловидный - близок к предыдущему, но тело более вытянуто и непарные плавники отодвинуты назад. Хорошие пловцы, обитатели толщи воды.- сарган, Щука. Сплющенный с боков -этот тип наиболее сильно варьирует.

Обычно его подразделяют на:

  • а) лещевидный,
  • б) тип луны-рыбы и
  • в) тип камбалы.

По условиям обитания рыбы, принадлежащие к этому типу, также очень разнообразны - от жителей толщи воды (луна-рыба) до придонных (лещ) или донных (камбала).

Змеевидный - тело сильно вытянуто, поперечный разрез почти круглый; обычно обитатели зарослей - угри, морские иглы и др.

Лентовидный - тело сильно вытянуто и сплющено t боков. Плохие пловцьк сельдяной король Hegalecus, Trachypterus и др.

Шаровидны их тело почти шарообразное, хвостовой плавник развит обычно слабо - кузовки, некоторые пинагоры и др.

Плоский - тело сплющено дорзовентрально различные скаты, морской черт.

Рис. Различные типы формы тела рыб:

1 - стреловидный (сарган); 2 - торпедовидный (скумбрия); 3 - сплющенный с боков, лещевидный (обыкновенный лещ); 4 - тип рыбы-луны (луна-рыба); 5 - тип камбалы (речная камбала); 6 - змеевидный (угорь); 7 - лентовидный (сельдяной король); 8 - шаровидный (кузовок) 9 - плоский (скат)

Все эти типы формы тела рыб, естественно, связаны между собой переходами. Например, обычная шиповка - Cobitis taenia L. - занимает промежуточное положение между змеевидным и лентовидным типами.

Поступательное движение обеспечивается путем изгибаний всего тела за счет той волны, которая передвигается по телу рыбы (рис.). Другие рыбы перемещаются с неподвижным телом за счет колебательных движений плавников - анального, как например у электрического угря - Electrophorus electricus L., или спинного, как у ильной рыбы

Рис. Способы движения: вверху - угря; внизу - трески. Видно, как по телу рыбы идет волна

Amia calva L. Камбалы плавают, совершая колебательные движения одновременно и спинным, и анальным плавниками. У ската плавание обеспечивается колебательными движениями сильно увеличенных грудных плавников (рис. 4).

Рис. Движение рыб при помощи плавников: анального (электрический угорь) или грудных (скат)

Хвостовой плавник, главным образом, парализует тормозящее движение конца тела и ослабляет обратные токи. По характеру действия хвосты рыб принято разделять на:

  • 1) изобатический, где верхняя и нижняя лопасти равновелики; подобный тип хвоста имеется у скумбрии, тунца и многих других;
  • 2) эпибатический, у которого верхняя лопасть развита лучше, чем нижняя; этот хвост облегчает движение вверх; подобного рода хвост характерен для акул и осетровых;
  • 3) гипобатический, когда нижняя лопасть хвоста развита больше верхней и способствует движению вниз; гипобатический хвост имеется у летучей рыбы, леща в некоторых других (рис.).

Основную функцию рулей глубины выполняют у рыб грудные, а также и брюшные плавники. При помощи их осуществляется отчасти и поворачивание рыбы в горизонтальной плоскости. Роль непарных плавников (спинного и анального), если они не несут функции поступательного движения, сводится к содействию поворотам рыбы вверх и вниз и лишь отчасти к роли килей-стабилизаторов.

Способность больше или меньше изгибать тело находится, естественно, в связи с. его строением. Рыбы с большим числом позвонков могут сильнее изгибать тело, чем рыбы с малым числом позвонков. Число позвонков у рыб колеблется от 16 у луны-рыбы, до 400 у ремень-рыбы. Также рыбы с мелкой чешуей могут изгибать свое тело в большей степени, чем крупно чешуйные.

Для преодоления сопротивления воды чрезвычайно важно сведение до минимума трения тела о воду.

Это достигается путем максимального сглаживания поверхности и смазки ее соответствующими понижающими трение веществами. У всех рыб, как правило, кожа имеет большое количество бокаловидных желез, которые выделяют слизь, смазывающую поверхность тела. Лучшие пловцы среди рыб имеют торпедовидную форму тела.

Скорости движения рыб связаны и с биологическим состоянием рыбы, в частности, зрелостью гонад. Они зависят и от температуры воды. Наконец, скорость движения рыбы может меняться от того, движется рыба в стае или в одиночку. Наибольших скоростей могут достигать некоторые акулы, меч-рыбы, тунцы. Голубая акула - Carchariaus glaucus L.-перемещается со скоростью около 10 м/сек, тунец - Thunnus tynnus L. - со скоростью 20 м/сек, лосось -- Salmo salar L. - 5 м/сек. Абсолютная скорость движения рыбы зависит от ее размеров.-- Поэтому для сравнения скорости движения разноразмерных рыб используется обычно коэффициент скорости, представляющий собою частное от деления абсолютной скорости движения рыбы на корень квадратный из ее длины.

У очень быстро двигающихся рыб (акулы, тунцы) коэффициент скорости около 70. Быстро двигающиеся рыбы (лосось, скумбрия) обладают коэффициентом 30-60; умеренно быстрые ("сельдь, треска, кефаль) - от 20 до 30; небыстрые (например, лещ) - qx 10 до 20; медленные, (подкаменщики, скориены) - от 5 до 10 и очень медленные (луна рыба) - менее 5.

Хорошие пловцы в текучей воде несколько отличаются по форме тела от хороших пловцов в стоячей воде, в частности, у нервых хвостовой стебель обычно значительно выше, и короче, чем у вторых. В качестве примера можно сравнить форму хвостового стебля форели, приспособленной жить в воде с быстрым течением, и скумбрии - обитателя медленно двигающихся и стоячих морских вод. .

Быстро плавая, преодолевая быстрины и перекаты, рыбы утомляются. Они не могут плавать длительное время без отдыха. При большом напряжении у рыб в крови происходит накопление молочной кислоты, которая при отдыхе затем исчезает. Иногда рыбы, например, при прохождении рыбоходов, настолько утомляются, что, пройдя их, даже гибнут. В связи с. этим при конструировании рыбоходов необходимо предусматривать в них соответствующие места для отдыха рыб.-:

Рис. Схема движения летучей рыбы при взлете. Вид сбоку и сверху.

Среди рыб есть представители, которые приспособились к своеобразному полету по воздуху. Наиболее хорошо это свойство развито у летучих рыб - Exocoetidae; собственно, это не настоящий полет, а парение по типу планера. У этих рыб грудные плавники развиты чрезвычайно сильно и выполняют ту же функцию, .что и крылья самолета или планера (рис.). Основным двигателем, дающим начальную скорость при полете, является хвост и, в первую очередь, его нижняя, лопасть. Выскочив на поверхность воды, летучая рыба еще некоторое время скользит по водной поверхности, оставляя за собой кольцевые волны, расходящиеся в стороны. В то время, когда тело летучей рыбы находится в воздухе, а в воде остается только ее хвост, она все еще продолжает увеличивать скорость движения, нарастание которой прекращается только после полного отрыва тела рыбы от поверхности воды. Держаться в воздухе летучая рыба может около 10 сек и пролетает при этом расстояние свыше 100 ж.


Мир океанов, морей, рек и озер наполнен множеством обитателей. Рыбы относятся к большинству жителей водных глубин, но даже в их огромной семье бесчисленное количество видов. Практически все они имеют общие особенности строения, благодаря которым, плавают, точнее, очень быстро передвигаются в своей родной стихии.

Мышцы и плавники рыб: двигатель, руль и тормоза

Основную массу тела рыб составляют мышцы. Они соединяются с позвоночником и плавниками, обеспечивая их подвижность за счет сокращений. Благодаря развитой мускулатуре, рыбы могут виртуозно управлять собственным телом, вызывая волнообразные движения всего туловища или хвоста.

Плавники также соединены с мышечными волокнами и при необходимости могут сворачиваться и разворачиваться, меняя направление и скорость движения в воде. Главным двигателем рыб является хвостовой плавник, созданное природой совершенное весло, благодаря которому морские животные двигаются вперед.

Парные грудные и брюшные плавники позволяют рыбам двигаться вверх и вниз, а спинной и подхвостовой дают возможность держаться в прямом положении и избегать поворота вокруг собственной оси.

Подхвостовые плавники служат рыбам и в качестве тормоза, а с помощью брюшных они также могут подниматься на поверхность. У плавников могут быть различные функциональные особенности, которые меняются, в зависимости от ситуации и видов рыб.

В семействе морских жителей есть множество исключений из общих правил движения. Обусловлены они разнообразием животных и их ролью в подводном мире. Именно по этой причине за ними так интересно наблюдать.

Способы плавания у рыб

Классикой является плавание морских видов: акул, сельди, марлина и скумбрии. Их тела стремительно перемещаются, двигаясь равномерно из стороны в сторону. Форель и совершают быстрые маневры во время охоты, долгих заплывов вверх против течения, а также спасаясь от хищников.

Тунец совершает длинные морские переходы, благодаря чуть заметным движениям туловища, использует хвост в форме серпа в качестве руля. А угри используют для перемещений одну только мускулатуру и цепкий хвост, их плавники практически отмерли за ненадобностью.

Интересным способом двигается в воде морской конек. Его спинной плавник колеблется с удивительной быстротой. Этот плавник - единственное средство для совершения им морских прогулок и поиска пищи.

Наблюдая за плаванием рыб, можно увидеть, как разнообразен и прекрасен подводный мир, с какой фантазией и благоразумием он создан природой и подарен человеку. Оберегать этот оазис и изучать его особенности - большая и сложная задача на многие годы вперед.

10.1Механизм движения рыб и роль плавников Механическое движение занимает важное место в жизнен­ных процессах. Рыба перемещается в воде - плавает, прока­чивает воду сквозь жаберный аппарат, сердце проталкивает кровь по сосудам, кишечник проталкивает пищу. Имеются и другие, менее заметные, но тоже очень важные формы механи­ческого движения - изменяется просвет кровеносных сосудов зрачка глаз, сокращаются и растягиваются стенки пузыря, сжимаются и расслабляются кольца

Акт движения рыб осуществляется за счет активной работы плавников. Плавники рыб бывают: парные-грудные, брюшные и непарные-спинной, анальный, хвостовой, спинной плавник может быть один (у карповых), два (у окуневых) и три (у тресковых). Хвостовой плавник принимает некоторое участие в поступательном движении, парализуя тормозящее движение конца тела и ослабляя обратные токи. По характеру действия хвосты рыб принято разделять на: 1)изобатический , где верхняя и нижняя лопасти равновелики: подобный тип хвоста имеется у скумбрии, тунца и многих других: 2)эпибатический – у которого верхняя лопасть развита лучше, чем нижняя: этот хвост облегчает движение вверх подобного рода хвост характерен для акул и осетровых: 3) гипобатический, когда нижняя лопасть хвоста развита больше верхней и способствует движению вниз: такой хвост имеется у летучей рыбы леща и некоторых других рыб. (Рис.66)

Жировой плавник без костных лучей представляет мягкий кожный вырост на задней части спины (лососевые). Плавники обеспечивают равновесие тела рыб и движения ее в разных направлениях, хвостовой плавник создает движущую силу и исполняет роль руля, обеспечивая маневренность рыбы при поворотах. Спинной и анальный плавники поддерживают нормальное положение тела рыбы, т.е. выполняют роль киля. Парные плавники поддерживают равновесие и являются рулями поворотов и глубин. Основную функцию рулей глубины выполняют у рыб грудные, а также брюшные плавники. С их помощью осуществляется отчасти и поворачивание рыбы в горизонтальной плоскости. Роль непарных плавников сводится к содействию поворотам рыбы вверх и вниз и к роли килей.

На брюшной стороне туловища, каудальное место прикрепления брюшных плавников имеется анальное отверстие, а сразу за ним – мочеполовой сосочек; у части рыб он представляет собой углубление с двумя отдельными отверстиями; мочевым (заднее) и половым. Место расположения заднепроходного, полового и мочевого отверстий за границей тазового и хвостового позвонка.



Плечевой пояс имеет вид хрящевого полукольца, лежащего в мускулатуре стенок тела позади жаберного отдела. Часть пояса называется лопаточным отделом, вентральнее – коракойдным. В основании скелета свободной конечности расположены 3 уплощенные базальные хрящи. Дистальнее базальных хрящей расположены в 3 ряда палочковидные радиальные хрящи. Остальная часть лопасти свободного плавника поддерживается многочисленными тонкими эластиновыми нитями – элементами вторичного кожного скелета.

Тазовый пояс – представлен хрящевой пластинкой, лежащей в толще брюшной мускулатуры перед клоакальной щелью. В брюшных плавниках имеется только один базальный элемент. Он сильно удлинен, и к нему прикрепляется один ряд радиальных хрящей. Остальная часть свободного плавника поддерживается эластиновыми нитями. У самцов удлиненный базальный элемент продолжается за пределы лопасти плавника как скелетная основа копулятивного выроста.

10.1.1 Непарные плавники. Представлены хвостовым анальным и спинным плавниками. У ключей акулы анального плавника нет. Хвостовой плавник акул гетероцеркальный, его верхняя лопасть значительно длиннее нижней, осевой скелет – позвоночник заходит только в верхнюю лопасть.

Скелетную основу хвостового плавника образуют удлиненные верхние и нижние дуги позвонков. Большая часть лопасти хвостового плавника поддерживается эластиновыми нитями. В основании скелета спинных и анальных плавников лежат радиальные хрящи, которые погружены в толщу мускулатуры. Иногда они сливаются в более крупные образования. Свободная лопасть плавника поддерживается эластиновыми нитями. У колючей акулы перед каждым спинным плавником расположен роговой шип, который, как и плакоидные чешуи, представляет собой элемент кожного скелета.

10.1.2 Жаберные крышки. Жаберные дуги представлены каждая четырьмя парными косточками, подвижно сочлененными между собой, и объединяющимися снизу при помощи непарных костных элементов. Пятая, самая задняя жаберная дуга, имеет лишь один парный (нижний) отдел.

Жаберные крышки состоят из четырех вторичных (покровных) костей: крышки (opezculum) и межкрышки (intezopezculum). Жаберная крышка каждой стороны через предкрышечную кость прикрепляется к соответствующей подвеске и к квадратной кости.

10.1.3 Парные конечности и их пояса . Парные конечности представлены грудными и брюшными плавниками. Опорой грудных плавников в теле рыбы служит плечевой пояс. Он представлен двумя небольшими замещающими (первичными) и несколькими покровными костями. Верхняя из замещающих костей – лопатка (scapula) расположена в области причленение свободной конечности. Сразу под ней находится коракоид (coracoideum). Эти два элемента составляют первичный пояс. Они неподвижно соединены с крупной покровной костью клейтрум (coracoideum), верхний конец которой направлен несколько вперед; к нему присоединяется небольшая кость надклейтрум (supracleithum). Клейтрум в свою очередь соединяется с заднетеменной (posttemporale) костью. Направленные вперед нижние концы правого и левого клейтрумов соединяются друг с другом. Позади клейтрума неподалеку от лопатки и коракоида расположена небольшая заднеключичная кость (postcleithrum).

Все названные кости парные, они составляют вторичный плечевой пояс. Правая и левая заднетеменные кости причленяются к осевому черепу, что обеспечивает более прочную фиксацию пояса, и таким ообразом усиливает его опорную функцию.

Рис. 66 . Скелет парных плавников и их поясов:

А – хрящевая рыба; Б – костистая рыба; 1 – грудной плавник с плечевым поясом;11 – брюшной плавник с тазовым поясом; 1 – лопаточный отдел; 2 – коракоидный отдел; 3 – базалии; 4 – радиалии; 5 – плавниковые лучи; 6 – птеригоподии; 7 –лопатка; 8 – коракоид; 9 – клейт-рум; 10 – задняя клейтрум; 11 – надклейтрум; 12 – задневисочная кость; 13 – тазовая кость

Грудной плавник в своем основании имеет один ряд мелких косточек – радиалий (radialia), отходящих от лопатки (частично и от коракоида). Вся свободная лопасть плавника состоит из членистых кожных лучей (lepidotrichia). Особенность скелета грудных плавников костистых рыб, по сравнению с хрящевыми, заключаются в редукции базалий. Подвижность грудных плавников увеличивается потому, что мышцы прикрепляются к расширенным основаниям кожных лучей, подвижно сочленяющихся с радиалами.

Тазовый пояс представлен сливающимися друг с другом парными плоскими треугольными костями, лежащими в толще брюшной мускулатуры и не связан с осевым скелетом. К боковым сторонам тазового пояса причленяются брюшные плавники. У большинства костистых рыб в скелете брюшных плавников лопасть плавника поддерживается кожными костными лучами (lepidotrichia), расширенные основания, которых непосредственно причленяются к тазовому поясу. Такое упрощение скелета брюшных плавников связано с их ограниченными функциями.

10.1.4 Непарные конечности . Непарные конечности представлены спинными, подхвостовыми (анальным) и хвостовым плавниками. Анальные и спинные плавники состоят из костных лучей, подразделяющихся на внутренние (скрытые в толще мускулатуры) птиригофоры и наружные плавниковые лучи – лепидотрихии.

Хвостовой плавник, имеет влияние равнолопастное строение, однако при рассмотрении его внутреннего скелета видно, что концевые позвонки позвоночного столба сливаются в палочковидную косточку – уростиль (urostal), которая заходит в основание лишь верхней лопасти плавника, а основание нижней лопасти поддерживается расширенными, довольно широкими нижними дугами позвонков гипуралиями. Такой тип строения хвостового плавника, носит название галоцеркального. Наружный скелет хвостового плавника составлен многочисленными кожными лучами – лепидотрихиями.

Из многочисленных способов движения известных среди животных, рыбам свойственны три: плавания, ползания и полет.

В зависимости от выполняемой функции, плавники делят на две группы. Первую группу составляют приспособления, непосредственно направленные на создание локомоторной силы, т.е. морфологические особенности, которые определяются отношением двигателя рыбы. Вторая группа- приспособления, которые движущаяся рыба встречает со стороны определяющей ее виды.

10.2 Функция локомоции и строение хвостового плавника . Функции хвостового плавника многообразны.

1. Хвостовой плавник участвует в общей локомоторной работе туловища, создавая силу, которая толкает рыбу вперед;

2. Действуя, как пассивная несущая полость, итероцеркальный хвостовой плавник создает некоторую подъемную силу, поддерживающую заднюю часть тела рыбы;

3. Хвостовой плавник является стабилизатором и отчасти вертикальным путем.

Хвостовой плавник у большинства рыб способен производить ряд сложных движений. Служит для изменения направления движения в вертикальной плоскости.

Первые три функции могут быть названы пассивными функциями хвостового плавника, так как при отправлении этих функций он действует просто как плоскость, более или менее метко прикрепленная на конце хвостового стебля. Последняя же функция является активной, так как при ее отправлении хвостовой плавник выполняет ряд сложных собственных движений и действует не просто как единая плоскость, а как сложная система, состоящая из отдельных элементов – лучей подвижно скрепленных с концом позвоночного столба. Особенности функции хвостового плавника у различных рыб определяют его форму, в отношении которой должны быть отличены в первую очередь два случая; хвостовой плавник, не разделенный на две лопасти, и хвостовой плавник, раздельный на две лопасти.

Плавание свойственно всем без исключения рыбам. Другие два способа характерны только для немногих видов, причем всегда имеют второстепенное значение. Наиболее общий и типичный для рыб способ движения плавания охватывает собой целый ряд модификации, которые могут быть разделены на две группы:

Первая группа заключает в себе способы плавания, в основе которых лежат волнообразные латеральные изгибания туловища.

Вторая группа – все остальные способы плавания, основу которых составляют те или иные движения плавников по характеру совершаемых плавательных движении делятся на 2 группы. Первая группа плавания основывается на движении плавников неундулирующего типа; преимущественно работа с грудными плавниками, при которых плавник отводится от тела в горизонтальном положении, затем ставится вертикально и приводится к телу, создавая в этот момент определенную локомоторную силу. Способ плавания Chronus chronus (L) u Crenilohrustina (L).Неундулирующие движения плавников являются второстепенным способом движения, при медленном плавании. Основным способом движения оно становится только у некоторых прибрежных медленно плавающих видов. Неундулирующие движения плавников используются в ряде случаев и для передвижения по грунту, как у Gohius иногда и для закапывания в грунт.

Другая группа имеет в своей основе ундулирующие движения плавников спинного и анального. Этот способ плавания встречаются у скатов. Громадному большинству рыб свойственно плавание при помощи латеральных изгибании, этот способ движения является для рыб закономерным. В основе локомоции при помощи ундулирующих движении плавников, лежат волнообразные изгибания пластинки плавника, обусловленные последовательности поперечности отношениями лучей.

Поступательное движение рыб в разных случаях обеспечивается ундуляцией грудных, спинного или анального плавников или же той или иной комбинацией действии этих плавников. У скатов единственным органом локомоции являются чрезвычайно расширенные грудные плавники. Большая поверхность этих плавников и значительная дорзовентральная подвижность их лучей превращает их в прекрасный ундулирующий аппарат. Волны ундуляции приходят по плавникам спереди назад, создавая движущую силу, направленную вперед. Дублирующими мембранами, сообщающими рыбе поступательные движения, являются спинной и анальные плавники. В этом случае совокупное действие этих плавников создает силу, движущую рыбу вперед, причем волны ундуляции на плавниках направлены параллельно линиям основания плавника. Благодаря волнообразным изгибаниям пластинки плавника, возникают силы, толкающие рыбу вперед.

10.2.1 Функции плавников . В теле рыбы выделяются четыре постоянные зоны, для которых специфичны определенные функции плавников. Эти зоны можно назвать функционально специфическими, так как для каждой из них специфична определенная функция или ряд функций. I - зона передних рулей, и несущих плоскостей, II - зона килей, III-зона стабилизаторов, и IV- зона задних рулей и локомоторных органов. Функции зоны I выполняются парными плавниками брюшных плавников или только грудными.

Функции зоны II выполняются той частью спинного плавника, которая расположена спереди от центра тяжести, а также брюшными плавниками и отчасти анальным, если эти плавники или их передние отделы расположены спереди от центра тяжести. Функции зоны II выполняются морфологическими обособленными отделами спинного и анального плавников, которые расположены сразу за центром тяжести.

Функции зоны III несут самые задние отделы спинного и анального плавников (если они приближены к заднему концу тела) и хвостовой плавник.

Указанное расположение на теле функционально специфических зон характерны для всех рыб вписывающих при помощи волнообразных изгибании тела.

10.3 Плавание рыб . Плавание рыб происходит благодаря работе поперечно­полосатой мускулатуры, которая приводит в движение движительные плавники. Рыбы передвигаются в толще воды, создавая упор, т. е. отталкиваясь от среды, обладающей некоторой плотностью, вязкостью и податливостью. Проще все­го понять явление упора, рассматривая гребное плавание при помощи пар­ных грудных плавников.

Грудной плавник, закрепленный своим основанием на плечевом поясе, под действием мускулатуры совершает движения, подоб­ные вращению калитки вокруг петель. При движении назад, во время греб­ка, плавник максимально расправлен и создает максимальный упор. При движении плавника вперед, при подготовке гребка, лучи сведены и создают минимальный тормозящий упор. Гребным плаванием пользуются щуки, зеленухи, колюшки, бычки, сростночелюстные и многие другие рыбы.

Одиночный цикл движения плавника может быть подразделен на движе­ние вперед (подготовка гребка), движение назад (гребок) и период, когда плавник прижат к телу (рефрактерная фаза). Скорость плавания рыбы за­висит от скорости движения плавника - скорость движения внешнего края плавника всегда больше скорости поступательного движения рыбы, т. е. плавник является двигателем. Угловая амплитуда движения плавника мо­жет достигать 90 0 . Скорость растет при уменьшении доли времени рефрак­терной фазы и при росте доли времени активных фаз - подготовки и гребка, которые занимают приблизительно одинаковую часть времени. Скорость пла­вания находится в прямой зависимости от частоты гребков, которая может достигать 20 Гц, но обычно не превышает 5 Гц.

Движение грудных плавников у большинства рыб поочередное (типа «кроль»), но у некоторых видов, например у карпа,- одновременное (типа «брасс»). Скорость плавания при работе одних только плавников небольшая, расход энергии тоже, по-видимому, небольшой, так как в работу вовлекают­ся небольшие массы мускулатуры плечевого пояса. Коэффициент полезного действия мускулатуры при таком типе плавания довольно высок.

При плав­никовом плавании туловищно-хвостовая мускулатура не бездействует, она в какой-то степени напряжена для поддержания обтекаемой «позы». В против­ном случае тело начинает пассивно колебаться в набегающем потоке, как водоросль в потоке, или как флаг на ветру (так называемый флаттер), и это вызывает торможение.

Ограниченные массы мускулатуры вовлекаются в ра­боту при плавании с помощью непарных плавников, например спинного, анального, когда эффективный упор создают поперечные складки плавников. Наибольшие скорости достигаются рыбами при периодическом волнооб­разном изгибании всего тела (ундуляции). Движителем в этом случае служит почти вся поверхность тела, за исключением негибкой головы.

При движении рыб активно сокращается почти вся туловищно-хвостовая мускулатура, составляющая приблизительно половину массы тела. Упор при ундуляционном плавании создается искривлением тела и движением локомоторной волны от головы к хвосту. За один цикл движения рыба могла бы продвинуться на длину тела до теоретического финиша, но в результате наличия КПД движителя 0,70 возникает пробуксовка и она проплывает расстояние до фактического финиша.

Н. В. Кокшайский охарактеризовал плавание как явление, при ко­тором организм образует некоторую систему подвижных элементов, отталкивающих среду и одновременно отталкивающихся от нее. Длина локомоторной волны (расстояние между соседними гребнями) соизмерима с длиной рыбы.

Рис.67. Схематическое изображение плавания рыбы. Стрелки изображают на­правление приложения упора.

Скорость движения локомоторной волны по телу рыбы равна произведению длины волны на частоту взмахов хвоста, численно она также близка произ­ведению длины рыбы на частоту ундуляции:

где U - скорость локомоторной полны; f-частота ундуляции; - длина локомоторной волны; L - длина рыбы. Вода представляет собой податливую среду, поэтому в ней имеет место некоторая «пробуксовка» движителей. Скорость плавания рыбы поэтому всег­да меньше скорости локомоторной волны:

где КЭ - коэффициент эффективности движителя; - скорость плавания рыбы.

Максимальная скорость плавания рыбы является функцией длины тела и максимальной частоты ундуляции, т. е. максимальной частоты сокращений туловищной мускулатуры. Максимальная частота ударов хвоста при плавании некоторых достигает 30 Гц.(Таблица 20).

Максимальные частоты ундуляции и соответствующие им максимальные, так называемые спринтерские скорости могут поддерживаться в течение нескольких секунд. Далее наступает утомление и скорость резко падает, это связано со строением рыбы: с большим числом позвонков могут сильнее изгибать тело, чем рыбы с малым числом позвонков. Число позвонков у рыб колеблется поразному: так у рыбы -луны от 16 и у ремень рыбы до 400. Рыбы с мелкой чешуей также могут изгибать свое тело в большей степени, чем крупночешуйные.

Таблица 21 - Расчетные значения скорости плавания рыб (см./с) как функ­ция частоты ундуляции (Гц) и длины рыбы (см) для области чисел Рейнольдса менее 10 5 (по Яржомбек, 1975)

Скорость движения рыб связана и с биологическим состоянием рыбы, в частности зрелостью гонад, температурой воды может меняться и от того, движется рыба в стае или в одиночку. Наибольших скоростей достигают некоторые акулы, меч- рыбы, тунцы. Голубая акула перемещается со скоростью около - 10 м./сек, тунец со скоростью 20м/ сек, лосось 5м/сек. Абсолютная скорость движения рыбы зависит от ее размеров. Крупные рыбы обладают большей скоростью, чем более мелкие. Эта зависимость выражается следующей формулой:

V = 1 [ L (3f-4)]

Где V - скорость в см./ сек.

L - длина рыбы в см.

f - число взмахов хвоста в секунду

Поэтому для сравнения скорости движения разноразмерных рыб используется обычно коэффициент скорости представляющий собой частное деление абсолютной скорости движения рыбы на корень квадратный ее длины (V ).

Рыбы хорошие пловцы, в текучей воде по форме тела отличаются от хороших пловцов в стоячей воде, в частности у первых хвостовой стебель обычно значительно выше и короче, чем у вторых. В качестве примера можно сравнить форму хвостового стебля форели, приспособленной к жизни в воде с быстрым течением, и скумбрии- обитателя медленно двигающихся и стоячих морских вод.

Быстро плавая, преодолевая быстрины и перекаты, рыбы утомляются. Они не могут длительно плавать без отдыха. При большом напряжении у рыб в крови накапливается молочная кислота, которая после отдыха исчезает. Молочная кислота влияет на растворимость газов кровью и на транспортную функцию гемоглобина. Рыбы, при прохождении рыбоходов, утомляются, преодолевая их, даже гибнут.

Благодаря специфическому строению мускулатур рыб, сокращение каждого миомера вызывает изгиб тела на довольно большой протяженности, т. е. создается ры­чаг приложения силы. Мышечные волокна в миомерах ориенти­рованы таким образом, что одно волокно является как бы про­должением другого и такие составные нити косо расходятся от средней линии по направлению к хвосту и краям тела.

Светлая и темная мускулатура рыб во многом различна. При спокойном плавании рыбы в крейсерском режиме число сокращений волокон темной мускулатуры равно числу плавательных движений. Сокращения волокон белой мускулатуры носят нерегулярный характер.

Существует некоторая неутомля­ющая частота мышечных сокраще­ний, при которой времени между дви­гательными актами достаточно для полного восстановления работоспо­собности. При таких режимах движе­ния происходят длительные миграции рыб. Неутомляющая средняя ско­рость в 5-10 раз меньше максималь­ной спринтерской скорости плавания. Проведенные эксперименты и наблю­дения в естественных условиях пока­зали, что лососи не утомляются при скорости плавания 1-2 длины тела в секунду, т. е. до 5 км/ч.

Рис.68. Скорости плавания быстроходных рыб: I- неутомляющая скорость;II- стайерская скорость; III- скорость средних дистанции; IV- спринтерская скорость; V- скорость прыжков с разбега

Тунцы - ре­кордсмены среди рыб; по скоростной выносливости могут длительное время двигаться со скоростью 3-4 длины тела в секунду, т. е. порядка 20 км/ч.

Между неутомляющими и спринтерскими скоростями имеется область, где время поддерживания скорости находится в обратной связи с задан­ной скоростью.

По аналогии со спортивной терминологией эту об­ласть можно разбить на «средние ди­станции» - до времени движения несколько десятков минут и «стайер­ские дистанции». Стайерская скорость может поддерживаться несколько часов, но она все-таки не является неутомляющей, или крейсерской, скоростью (рис. 69).

Наилучшие среди рыб пловцы - тунцы, ставриды, лососи. Они плавают в 2-3 раза быстрее и выносливее, чем посредственные пловцы, такие, как осётровые, камбалы, бычки, угри.

Таблица 22 - Максимальная частота плавательных движений

Чтобы добывать пищу и спасаться от врагов, рыбы должны двигаться в плотной водной массе. Поэтому все они имеют обтекаемую форму тела, что облегчает им преодолевать сопротивление воды. Между головой, туловищем и хвостом нет никаких выступов и переходов и нет четкой границы. Клиновидная голова, приспособленная рассекать воду, неподвижно сочленена с позвоночником.

Рыбы, совершающие дальние переходы или постоянно живущие на быстрине, имеют наиболее совершенную обтекаемую форму - их туловище вальковатое или веретенообразное снабжено мощным хвостом. У рыб, обитающих в тихих водах, тело высокое, приспособленное к быстрой смене направления движения. Различаются по форме туловища рыбы, живущих на дне (они как бы сплющены) и в верхних слоях воды (с плоскими боками).

На форму тела влияет и характер питания рыб. Более длинное и прогонистое туловище имеют хищники, вынужденные догонять добычу. Рыбы, употребляющие малоподвижную пищу, короче хищников по длине, но значительно превосходят их высотой тела.

Главным двигательным органом рыб является хвост, с помощью которого они как бы отталкиваются от воды. У большинства наших рыб хвосты снабжены двухлопастными плавниками, у сома, налима и некоторых других хвостовой плавник однолопастный.

Кроме хвостового имеются два грудных плавника, расположенные неподалеку от головы по обе стороны туловища, а сзади них и чуть ниже - два брюшных. Непарный подхвостовой плавник расположен на брюхе сзади анального отверстия. На спине бывает по два (окунь, судак) или по одному (щука) спинному плавнику.

Плавники - это образования, состоящие из жестких и мягких костных лучей, соединенных перепонками. Назначение хвостового - помогать движению вперед.

Спинной и подхвостовой являются своеобразными килями, регулирующими положение тела рыбы в вертикальной плоскости. Грудные и брюшные плавники облегчают рыбе движение вверх - вниз и во время поворотов.

Снаружи все тело рыбы покрыто тонким гибким панцирем, образованным костяными пластинками - чешуей. Чешуйки бывают трех видов. У карповых (белых) рыб - они с закругленным передним краем; в коже такие чешуйки сидят непрочно и легко отпадают.

У окунёвых чешуя с зубчиками; в коже сидят очень прочно. Чешуей с выступающим посередине зубом покрыто тело осетровых.

Размер чешуек увеличивается вместе с ростом рыбы. Но происходит это не за счет расширения уже имеющейся пластинки, а за счет появления под ней новой молодой чешуйки большего размера. Иными словами, по мере увеличения возраста рыбы чешуя увеличивается и по ширине и по толщине. Она становится похожей на стопку наложенных друг на друга и сросшихся тонких пластинок, из которых верхняя - самая старая и маленькая, а нижняя - самая большая и молодая. Эта особенность роста чешуи позволила ученым выработать методику определения возраста рыбы.

Взятую выше боковой линии под спинным плавником чешую тщательно очищают от остатков кожи и слизи и помещают под лупу 8-10-кратного увеличения. Видимые в лупу концентрические кольца - это края всех, постепенно образовавшихся пластинок.

Но рост рыбы, а следовательно, и рост чешуек, неравномерен в течение года. Летом рыба активно кормится и растет быстрее, поэтому расстояния между краями пластинок получаются наиболее широкими. Осенью, в связи с замедлением роста рыбы, они сужаются. А зимой сближаются настолько, что образуют одно темное кольцо. Следующим летом на пластинке появляются новые широкие концентрические кольца, сужающиеся к осени и зиме. Стало быть, количество темных колец на чешуе рыбы и будет соответствовать числу лет ее жизни.

Кроме чешуйчатого панциря тело рыбы покрывает и обильный слой слизи. Она выполняет двоякую роль. Во-первых, предохраняет кожу от грибков, бактерий, механических взвесей в воде и воздействия различных химических солей. А, во-вторых, как всякая смазка, облегчает рыбе скольжение в воде.

Быстрее перемещаться в толще воды с малым расходом мышечной энергии рыбе помогает и такой гидростатический аппарат, как плавательный пузырь. Он находится в полости тела под позвоночником и сообщается у одних рыб - с полостью глотки, у других - с анальным отверстием. Для того, чтобы уйти на глубину, рыба выпускает из пузыря часть находящегося там газа.